Factor out the common term; 3
(3(x + 1))^2 = 36
Use the Multiplication Distributive Property; (xy)^a = x^ay^a
3^2(x + 1)^2 = 36
Simplify 3^2 to 9
9(x + 1)^2 = 36
Divide both sides by 9
(x + 1)^2 = 36/9
Simplify 36/9 to 4
(x + 1)^2 = 4
Take the square root of both sides
x + 1 = √4
Since 2 * 2 = 4, the square root of 2 is 2
x + 1 = 2
Break down the problem into these 2 equations
x + 1 = 2
x + 1 = -2
Solve the first equation; x + 1 = 2
x = 1
Solve the second equation; x + 1 = -2
x = -3
Collect all solutions;
<u>x = 1, -3</u>
Answer:
Step-by-step explanation:
Since G(0) = g(0) = 20, the parabolic graphs of these functions share a y-intercept: (0, 20).
Completing the square puts these equations into vertex form, which simplifies comparisons of the graphs:
G(x) = 2x^2 - 12x + 20 becomes
2(x^2 - 6x + 9 - 9) + 20, or
2(x - 3)^2 - 18 + 20, or 2(x - 3)^2 + 2. Comparing this result to
a(x - h)^2 + k, we see that the vertex is located at (3, 2).
Going through the same process for g(x) 2x^2+12x+20, we get:
g(x) = 2(x + 3)^2 + 2, whose vertex is at (-3, 2).
Next time, please include ALL info pertaining to your question, including the set of possible answer choices. Thank you.
Answer:
6.9
7.-5
8.-10
Step-by-step explanation: