So when you have one of these, it’s just asking you so solve it as if x were 6 (as you see where the x in f(x) is replaced with a 6.
so you’d sub x for 6
giving you:
4 x (6)
which = 24
hope that makes sense :)
Hey ! there
Answer:
- <u>1</u><u>1</u><u>3</u><u>.</u><u>0</u><u>4</u><u> </u><u>unit </u><u>cube</u>
Step-by-step explanation:
In this question we are provided with a sphere <u>having</u><u> </u><u>radius </u><u>3 </u><u>units </u>and <u>value </u><u>of </u><u>π </u><u>is </u><u>3.</u><u>1</u><u>4</u><u> </u><u>.</u><u> </u>And we're asked to find the<u> </u><u>volume</u><u> of</u><u> </u><u>sphere</u><u> </u><u>.</u>
For finding volume of sphere , we need to know its formula . So ,

<u>Where</u><u> </u><u>,</u>
- π refers to <u>3.</u><u>1</u><u>4</u>
- r refers to <u>radius</u><u> of</u><u> sphere</u>
<u>Sol</u><u>u</u><u>tion </u><u>:</u><u> </u><u>-</u>
Now , we are substituting value of π and radius in the formula ,

Simplifying it ,

Cancelling 3 with 3 :

We get ,

Multiplying 4 and 3.14 :

Multiplying 12.56 and 9 :

- <u>Henceforth</u><u> </u><u>,</u><u> </u><u>volume</u><u> </u><u>of</u><u> </u><u>sphere</u><u> </u><u>having </u><u>radius </u><u>3 </u><u>units </u><u>is </u><em><u>1</u></em><em><u>1</u></em><em><u>3</u></em><em><u> </u></em><em><u>.</u></em><em><u>0</u></em><em><u>4</u></em><em><u> </u></em><em><u>units </u></em><em><u>cube </u></em><em><u>.</u></em>
<h2>
<u>#</u><u>K</u><u>e</u><u>e</u><u>p</u><u> </u><u>Learning</u></h2>
Answer:
Step-by-step explanation:
4(x-3)2-5 = 139
(4x-12)-5=139
-20x + 60 = 139
-20x +60 - (60) = 139- 60
-20x = 79 divide both sides by -20
x = -3.95
<h3>Given</h3>
- C(t) = 40 cm + t·(2/5 cm/s) . . . circumference of a circle vs time
<h3>Find</h3>
- dr/dt for radius r
- r at t=4 seconds
<h3>Solution</h3>
The circumference and radius of a circle are related by
... C = 2πr
so the radius in terms of circumference is
... r = C/(2π)
... r(t) = (40 +0.4t)/(2π) = (1/π)(20 cm + 0.2t cm/s)
Then dr/dt is
... dr/dt = 0.2/π cm/s
And the radius at t=4 s is
... r(4) = (1/π)(20 + 0.2·4) cm
... r(4) = 20.8/π cm