The position of the particle is given by:
x(t) = t³ - 12t² + 21t - 9
Differentiate x(t) with respect to t to find the velocity x'(t):
x'(t) = 3t² - 24t + 21
Differentiate x'(t) with respect to t to find the acceleration x''(t):
x''(t) = 6t - 24
Answer:
25. Approximately 8.1 meters
26. North 1.31 km, and East 2.81 km
Explanation:
25.
Notice that the displacements: 6 meters east and 5.4 south create the legs of a right angle triangle. The hypotenuse of that triangle will be the distance (d) needed to cover in order to get the ball in the hole in one putt. That is:

which can be rounded to 8.1 m.
26.
Notice that the 3.1 km at an angle of 25 degrees north of east, is the hypotenuse of a right angle triangle that has for legs the east and north components of that distance.
We can find the leg corresponding to the east displacement using the cosine function (that relates adjacent side with hypotenuse):

and we can calculate the north component using the sine function that relates the opposite side to the angle with the hypotenuse.

She can first measure the mass on the scale, then measure the cm^3 by putting water in the cylinder and measuring the original water level minus the water level after you put the rock in. The take the measurement from the scale (g) and divide it by the measurement in the graduated cylinder (c^3).
Answer:
If I understand correctly. Line B is parallel to the circle. Also, the angle is less than 90.
- The size of the circle determines.
- The diameter should not be fixed either.
Answer:
t = 2 seconds
Explanation:
In 2nd question, the question is given the attached figure.
Initial speed of the bus, u = 0
Acceleration of the bus, a = 8 m/s²
Final speed, v = 16 m/s
We need to find the time taken by the car to reach the stop. Acceleration of an object is given by :

t is time taken

The bus will take 2 seconds to reach the stop.