Answer:
a. The central atom is sulfur
b. SF2
c. The central atom has two lone pairs
d. The ideal angle between the sulfur-fluorine bonds is 109.5°
e. I expect the actual angle between the sulfur-fluorine bonds to be less than 109.5° because unbonded pairs repel bonded pairs more than bonded pairs repel other bonded pairs. So the bonds here will be pushed closer than normal
false
Explanation:
The more gravity pulls down on an object it gets heavier. Weight is just the amount of force gravity is putting on something. So if gravity is pulling it down more ut would get heavier.
Answer:
Final concentration of C at the end of the interval of 3s if its initial concentration was 3.0 M, is 3.06 M and if the initial concentration was 3.960 M, the concentration at the end of the interval is 4.02 M
Explanation:
4A + 3B ------> C + 2D
In the 3s interval, the rate of change of the reactant A is given as -0.08 M/s
The amount of A that has reacted at the end of 3 seconds will be
0.08 × 3 = 0.24 M
Assuming the volume of reacting vessel is constant, we can use number of moles and concentration in mol/L interchangeably in the stoichiometric balance.
From the chemical reaction,
4 moles of A gives 1 mole of C
0.24 M of reacted A will form (0.24 × 1)/4 M of C
Amount of C formed at the end of the 3s interval = 0.06 M
If the initial concentration of C was 3 M, the new concentration of C would be (3 + 0.06) = 3.06 M.
If the initial concentration of C was 3.96 M, the new concentration of C would be (3.96 + 0.06) = 4.02 M