Answer: The proof is mentioned below.
Step-by-step explanation:
Here, Δ ABC is isosceles triangle.
Therefore, AB = BC
Prove: Δ ABO ≅ Δ ACO
In Δ ABO and Δ ACO,
∠ BAO ≅ ∠ CAO ( AO bisects ∠ BAC )
∠ AOB ≅ ∠ AOC ( AO is perpendicular to BC )
BO ≅ OC ( O is the mid point of BC)
Thus, By ASA postulate of congruence,
Δ ABO ≅ Δ ACO
Therefore, By CPCTC,
∠B ≅ ∠ C
Where ∠ B and ∠ C are the base angles of Δ ABC.
C. 4.45 cm. you take the circumference and divide it by pi to find the diameter
According to the given information, the equation represents a line that is tangent to the circle and goes through the point W is given by:
y = -x + 6.
<h3>What is the equation of the circle?</h3>
The equation of a circle of center
and radius r is given by:

In this problem, we have that the center is at point (0,2), hence:

It goes through point (3,3), hence:


Hence, the equation is:

<h3>What is the equation of the tangent line at point W?</h3>
It is given by:

Applying implicit differentiation, we have that:


Point W(3,3), hence:


Hence the equation is:
y - 3 = -(x - 3).
y = -x + 6.
More can be learned about the equation of a tangent line at brainly.com/question/8174665
#3.......the 3 with the m makes it greater than 1