Answer:
a)30.14 rad/s2
b)43.5 rad/s
c)60633 J
d)42 kW
e)84 kW
Explanation:
If we treat the propeller is a slender rod, then its moments of inertia is

a. The angular acceleration is Torque divided by moments of inertia:

b. 5 revolution would be equals to
rad, or 31.4 rad. Since the engine just got started


c. Work done during the first 5 revolution would be torque times angular displacement:

d. The time it takes to spin the first 5 revolutions is

The average power output is work per unit time
or 42 kW
e.The instantaneous power at the instant of 5 rev would be Torque times angular speed at that time:
or 84 kW
Answer:
the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
Explanation:
To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables
Mathematically this can be determined as

Where
Temperature at inlet of turbine
Temperature at exit of turbine
Pressure at exit of turbine
Pressure at exit of turbine
The steady flow Energy equation for an open system is given as follows:

Where,
m = mass
m(i) = mass at inlet
m(o)= Mass at outlet
h(i)= Enthalpy at inlet
h(o)= Enthalpy at outlet
W = Work done
Q = Heat transferred
v(i) = Velocity at inlet
v(o)= Velocity at outlet
Z(i)= Height at inlet
Z(o)= Height at outlet
For the insulated system with neglecting kinetic and potential energy effects

Using the relation T-P we can find the final temperature:


From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK

the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
Answer:
0.423m
Explanation:
Conversion to metric unit
d = 4.8 cm = 0.048m
Let water density be 
Let gravitational acceleration g = 9.8 m/s2
Let x (m) be the length that the spring is stretched in equilibrium, x is also the length of the cylinder that is submerged in water since originally at a non-stretching position, the cylinder barely touches the water surface.
Now that the system is in equilibrium, the spring force and buoyancy force must equal to the gravity force of the cylinder. We have the following force equation:

Where
N is the spring force,
is the buoyancy force, which equals to the weight
of the water displaced by the submerged portion of the cylinder, which is the product of water density
, submerged volume
and gravitational constant g. W = mg is the weight of the metal cylinder.

The submerged volume would be the product of cross-section area and the submerged length x

Plug that into our force equation and we have



Answer:
λ = 8.716 mm
Explanation:
Given:
- d = 10 cm
- Q >= 5 degrees
Find:
- Find the shortest wavelength of light for which this apparatus is useful
Solution:
- The formula that relates the split difference and angle of separation between successive fringes is given by:
d*sin(Q) = n*λ
Where,
λ: wavelength
d: split separation
Q: angle of separation between successive fringes
m: order number.
- Since this apparatus only shows the first order light so m =1
- the shortest possible wavelength corresponds to:
d*sin(Q) = λ
λ = 0.1*sin(5)
λ = 8.716 mm
No, it couldn't be.
On that scale, Neptune would be almost 1,740 MILES from the sun.
ON THAT SCALE !