1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gala2k [10]
3 years ago
7

A 6 kg object falls 10 m. The object is attached mechanically to a paddle-wheel which rotates as the object falls. The paddle-wh

eel is immersed in 600 g of water at 15°C. What is the maximum temperature that the water could be increased to? Is this a very efficient way of heating water? The specific heat of water is 4.186 J/(g* ˚C).
Physics
1 answer:
maksim [4K]3 years ago
5 0

Answer:16.234^{\circ}C

Explanation:

Given

Mass of object (m)=6 kg

falling height(h)=10 m

mass of water(m_w)=600 gm

temperature of water =15

specific heat of water =4.186 j/g-^{\circ}C

Let T be the Final Temperature of water

Here Object Potential Energy is converted into Heat energy which will be absorbed by water

Potential Energy(P.E.)=mgh=6\times 9.81\times 10=588.6 J

Heat supplied=m_wc(\Delta T)

H.E.=600\times 4.186\times (T-16)

588.6=2511.6\times (T-16)

T-16=0.234

T=16.234^{\circ}C

This is not an efficient way of heating water as there is only0.234^{\circ}Cincrease in temperature.

You might be interested in
O'Malley is riding on a bus which is moving at 10 m/s, and he throws a ball which he observes to be moving at 10 m/s relative to
Vikki [24]

Answer:

<em>20 m/s in the same direction of the bus.</em>

Explanation:

<u>Relative Motion </u>

Objects movement is always related to some reference. If you are moving at a constant speed, all the objects moving with you seem to be at rest from your reference, but they are moving at the same speed as you by an external observer.

If we are riding on a bus at 10 m/s and throw a ball which we see moving at 10 m/s in our same direction, then an external observer (called Ophelia) will see the ball moving at our speed plus the relative speed with respect to us, that is, at 20 m/s in the same direction of the bus.

3 0
3 years ago
Find the quantity of heat needed
krok68 [10]

Answer:

Approximately 3.99\times 10^{4}\; \rm J (assuming that the melting point of ice is 0\; \rm ^\circ C.)

Explanation:

Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

\begin{aligned}m&= 100\; \rm g \times \frac{1\; \rm kg}{1000\; \rm g} \\ &= 0.100\; \rm kg\end{aligned}

The energy required comes in three parts:

  • Energy required to raise the temperature of that 0.100\; \rm kg of ice from (-10\; \rm ^\circ C) to 0\; \rm ^\circ C (the melting point of ice.)
  • Energy required to turn 0.100\; \rm kg of ice into water while temperature stayed constant.
  • Energy required to raise the temperature of that newly-formed 0.100\; \rm kg of water from 0\; \rm ^\circ C to 10\;\ rm ^\circ C.

The following equation gives the amount of energy Q required to raise the temperature of a sample of mass m and specific heat capacity c by \Delta T:

Q = c \cdot m \cdot \Delta T,

where

  • c is the specific heat capacity of the material,
  • m is the mass of the sample, and
  • \Delta T is the change in the temperature of this sample.

For the first part of energy input, c(\text{ice}) = 2100\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (0\; \rm ^\circ C) - (-10\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_1 &= c(\text{ice}) \cdot m(\text{ice}) \cdot \Delta T\\ &= 2100\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 2.10\times 10^{3}\; \rm J\end{aligned}.

Similarly, for the third part of energy input, c(\text{water}) = 4200\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (10\; \rm ^\circ C) - (0\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_3&= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T\\ &= 4200\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 4.20\times 10^{3}\; \rm J\end{aligned}.

The second part of energy input requires a different equation. The energy Q required to melt a sample of mass m and latent heat of fusion L_\text{f} is:

Q = m \cdot L_\text{f}.

Apply this equation to find the size of the second part of energy input:

\begin{aligned}Q_2&= m \cdot L_\text{f}\\&= 0.100\; \rm kg \times 3.36\times 10^{5}\; \rm J\cdot kg^{-1} \\ &= 3.36\times 10^{4}\; \rm J\end{aligned}.

Find the sum of these three parts of energy:

\begin{aligned}Q &= Q_1 + Q_2 + Q_3 = 3.99\times 10^{4}\; \rm J\end{aligned}.

3 0
3 years ago
Which of these describes the part of the water cycle happening at D
tino4ka555 [31]
The answer is Runoff.
7 0
3 years ago
Read 2 more answers
A 0.14-MIN baseball is dropped from rest. It has a momentum of 0.90 kg⋅m/skg⋅m/s just before it lands on the ground.
nikitadnepr [17]

The time spent in the air by the ball at the given momentum is 6.43 s.

The given parameters;

  • <em>momentum of the ball, P = 0.9 kgm/s</em>
  • <em>weight of the ball, W = 0.14 N</em>

The impulse experienced by the ball is calculated as follows;

Ft = \Delta P

where;

Ft is impulse

\Delta P is change in momentum

The time of motion of the ball is calculated as follows;

t = \frac{\Delta P}{F} \\\\t = \frac{0.9 - 0}{0.14} \\\\t = 6.43 \ s

Thus, the time spent in the air by the ball at the given momentum is 6.43 s.

Learn more here:brainly.com/question/13468390

7 0
2 years ago
What are (a) the energy of a photon corresponding to wavelength 6.0 nm, (b) the kinetic energy of an electron with de Broglie wa
dlinn [17]

Explanation:

Given that,

Wavelength = 6.0 nm

de Broglie wavelength = 6.0 nm

(a). We need to calculate the energy of photon

Using formula of energy

E = \dfrac{hc}{\lambda}

E=\dfrac{6.63\times10^{-34}\times3\times10^{8}}{6.0\times10^{-9}}

E=3.315\times10^{-17}\ J

(b).  We need to calculate the kinetic energy of an electron

Using formula of kinetic energy

\lambda=\dfrac{h}{\sqrt{2mE}}

E=\dfrac{h^2}{2m\lambda^2}

Put the value into the formula

E=\dfrac{(6.63\times10^{-34})^2}{2\times9.1\times10^{-31}\times(6.0\times10^{-9})^2}

E=6.709\times10^{-21}\ J

(c). We need to calculate the energy of photon

Using formula of energy

E = \dfrac{hc}{\lambda}

E=\dfrac{6.63\times10^{-34}\times3\times10^{8}}{6.0\times10^{-15}}

E=3.315\times10^{-11}\ J

(d). We need to calculate the kinetic energy of an electron

Using formula of kinetic energy

\lambda=\dfrac{h}{\sqrt{2mE}}

E=\dfrac{h^2}{2m\lambda^2}

Put the value into the formula

E=\dfrac{(6.63\times10^{-34})^2}{2\times9.1\times10^{-31}\times(6.0\times10^{-15})^2}

E=6.709\times10^{-9}\ J

Hence, This is the required solution.

6 0
3 years ago
Other questions:
  • A motorcycle cover a distance of 1.8 km in 5 minute. calculate its average velocity?​
    15·2 answers
  • An empty cylindrical canister 1.50 m long and 91.0 cm in diameter is to be filled with pure oxygen at 25.0 C to store in a space
    10·1 answer
  • In the hydrogen atom, what is the total energy of an electron that is in an orbit that has a radius of 8.784 × 10^(-10) m?
    10·1 answer
  • The ability of water molecules to form hydrogen bonds with other water molecules and water's ability to dissolve substances that
    10·1 answer
  • Joe balances a stationary coin on the the tip of his finger 20 cm from the top of the table. How much work is Joe doing?
    13·1 answer
  • A 12 kg ball moving at 20 m/s strikes another ball at rest. After a completely inelastic collision, the balls move at 10 m/s. Wh
    12·1 answer
  • John walks 1.00 km north, then turns right and walks 1.00 km east. His speed is 1.50 m/s during the entire stroll.a) What is the
    8·1 answer
  • A longitudinal wave is observed. Exactly 6 crests are observed
    15·1 answer
  • Explain using physics vocabulary WHY the volume increases as the temperature increases.
    9·1 answer
  • The picture below shows a person swinging a toy plane attached to a string in
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!