Use w=m*g value of g is 1.67m/s^2
Answer: The wheel's average rotational acceleration is -0.4 radians per second squared (rad/s^2)
Explanation: Please see the attachments below
Heroin is the number 1 most addictive substance.
When acceleration is constant, the average velocity is given by

where
and
are the final and initial velocities, respectively. By definition, we also have that the average velocity is given by

where
are the final/initial displacements, and
are the final/initial times, respectively.
Take the car's starting position to be at
. Then

So we have

You also could have first found the acceleration using the equation

then solve for
via

but that would have involved a bit more work, and it turns out we didn't need to know the precise value of
anyway.
Answer:
<em>The final speed of the second package is twice as much as the final speed of the first package.</em>
Explanation:
<u>Free Fall Motion</u>
If an object is dropped in the air, it starts a vertical movement with an acceleration equal to g=9.8 m/s^2. The speed of the object after a time t is:

And the distance traveled downwards is:

If we know the height at which the object was dropped, we can calculate the time it takes to reach the ground by solving the last equation for t:

Replacing into the first equation:

Rationalizing:

Let's call v1 the final speed of the package dropped from a height H. Thus:

Let v2 be the final speed of the package dropped from a height 4H. Thus:

Taking out the square root of 4:

Dividing v2/v1 we can compare the final speeds:

Simplifying:

The final speed of the second package is twice as much as the final speed of the first package.