A) 4.7 cm
The formula for the angular spread of the nth-maximum from the central bright fringe for a diffraction from two slits is

where
n is the order of the maximum
is the wavelength
is the distance between the slits
In this problem,
n = 5


So we find

And given the distance of the screen from the slits,

The distance of the 5th bright fringe from the central bright fringe will be given by

B) 8.1 cm
The formula to find the nth-minimum (dark fringe) in a diffraction pattern from double slit is a bit differente from the previous one:

To find the angle corresponding to the 8th dark fringe, we substitute n=8:

And the distance of the 8th dark fringe from the central bright fringe will be given by

I think the correct answer from the choices listed above is the second option. The relationship between the direction of energy and wave motion in a transverse wave would be the <span>energy direction is perpendicular to the motion of the wave. Hope this answers the question. Have a nice day.</span>
1) First of all, we need to find the distance between the two charges. Their distance on the xy plane is

substituting the coordinates of the two charges, we get

2) Then, we can calculate the electrostatic force between the two charges

and

, which is given by

where

is the Coulomb's constant.
Substituting numbers, we get

and the negative sign means the force between the two charges is attractive, because the two charges have opposite sign.
You've given the answer, right there in your question.
The "magnitude of gravity" is described in terms of the acceleration
due to it, and you just told us what that is.
We can also notice that the figure you gave is about 0.66 of the
acceleration due to gravity on the Earth's surface. That tells us that
the distance from the Earth's center at that height is about
(1 / √0.66) = 1.23 times
the Earth's radius, so the height is about 910 miles above the surface.