Hello,
Your answer to this problem is 400/3
Hope this helps!
Answer:
Given that
V2/V1= 0.25
And we know that in adiabatic process
TV^န-1= constant
So
T1/T2=( V1 /V2)^ န-1
So = ( 1/0.25)^ 0.66= 2.5
Also PV^န= constant
So P1/P2= (V2/V1)^န
= (1/0.25)^1.66 = 9.98
A. RMS speed is
Vrms= √ 3RT/M
But this is also
Vrms 2/Vrms1= (√T2/T1)
Vrms2=√2.5= 1.6vrms1
B.
Lambda=V/4π√2πr²N
So
Lambda 2/lambda 1= V2/V1 = 0.25
So the mean free path can be inferred to be 0.25 times the first mean free path
C. Using
Eth= 3/2KT
So Eth2/Eth1= T2/T1
So
Eth2= 2.5Eth1
D.
Using CV= 3/2R
Cvf= Cvi
So molar specific heat constant does not change
Answer:
Explanation:
Work done in carrying bricks
mgh
= 207 x 9.8 x 3.65
-= 7404.4 J
Work done in compressing gas
PΔV
Pressure x change in volume
1.8 x 10⁶ ΔV = 7404.4
ΔV = 7404.4 / 1.8 x 10⁶m³
= 4113.33 x 10⁻⁶ m³
= 4113.33 cc
Answer:
B - A
Explanation:
For the combination of 2 vector to due southwest, 1 vector must due south and the other vector due west. Since vector B is already due west, vector A should due south. As vector A is already due north, vector -A would due south. So the combination of B + (-A) or B - A should points southwest
Answer:
c. 981 watts

Explanation:
Given:
- horizontal speed of treadmill,

- weight carried,

- grade of the treadmill,

<u>Now the power can be given by:</u>

(where grade is the rise of the front edge per 100 m of the horizontal length)
