Answer:
reading would be 5.413 m.
Explanation:
Given:-
- The actual distance from ruler to an object is d = 24.0 m
- The adiabatic bulk modulus, B = 2.37 *10^9 Pa
- The density of seawater, ρ = 1025 kg/m^3
- The preset value of speed of sound in air, v_th = 343 m/s.
Find:-
Determine the distance reading that the ruler displays.
Solution:-
- We will first determine the actual speed of the sound ( v_a) in sea-water which can be determined from the following formula:
v_a = √ (B / ρ )
- Plug in the values in the relationship above and compute v_a:
v_a = √ ( 2.37 *10^9 / 1025 )
v_a = 1520.59038 m/s
- The time taken (t) for for the sound to travel from source(ruler) to an object which is d distance away.
d = v_a*t
t = d / v_a
t = 24.0 / 1520.59038
t = 0.01578 s
- The distance reading on the ruler would be preset speed (v_th) of sound in air multiplied by the time taken(t).
reading = v_th*t
reading = (343)*(0.01578)
= 5.413 m
Answer:
a) 
b) Efficiency=76.77%
Explanation:
a)
In order to solve this problem, we can use the following formula:

the problem provides us with all the necessary information so we can directly use the formula:


b) In order to find the efficiency, we can use the following formula:

so we get:

Efficiency=76.77%
Answer:
The average atomic mass of X is 206.0346
Explanation:
Atomic mass of 200X = 200.028
% abundance of 200X = 40% = 40/100 = 0.4
Atomic mass of 210X = 210.039
% abundance of 210X = 100% - 40% = 60% = 60/100 = 0.6
Average atomic mass of X = (0.4×200.028) + (0.6×210.039) = 80.0112 + 126.0234 = 206.0346
Since Jim's speed is constant and he is moving in a straight line, he is not accelerating, and we know the net force on him is zero. There is no Force anywhere doing any work. So no power is being added to him or dissipated by him.
Explanation:
According to Newton's second law of motion, the rate of change of momentum is directly proportional to the applied unbalanced force. The mathematical expression is given by:

Where
F is the applied force
m is the mass of the object
v is the velocity with which it is moving

Momentum of a particle is given by the product of mass and velocity as :

Hence, this is the required solution.