Reactions occur when two or more molecules interact and the molecules change. Bonds between atoms are broken and created to form new molecules. That's it.
To solve this problem we will use the linear motion kinematic equations, for which the change of speed squared with the acceleration and the change of position. The acceleration in this case will be the same given by gravity, so our values would be given as,
Through the aforementioned formula we will have to
The particulate part of the rest, so the final speed would be
Now from Newton's second law we know that
Here,
m = mass
a = acceleration, which can also be written as a function of velocity and time, then
Replacing we have that,
Therefore the force that the water exert on the man is 1386.62
Answer:
D
Explanation:
D) The overall work done by gravity is zero
This statement is correct .
If m be the mass of each of the children and h be the height of tower
work done by gravity on the boys in going up = - mgh
it is so because force applied by gravity = mg downwards and displacement
is upwards
work done will be negative = - mgh
Work done by gravity on boys when they come down = + mgh because both force and displacement are downwards .
Hence total work done = - mgh + mgh = 0.
The children will have same kinetic energy as the inclined surface is friction-less so no energy will be dissipated hence addition of energy to boys in both the cases will be same.
Answer:
Option A. 180000 Kgm/s.
Explanation:
From the question given above, the following data were obtained:
For Train Car A:
Mass of train car A = 45000 Kg
Velocity of train car A = 4 m/s
Momentum of train car A =?
For Train Car B:
Mass of train car B = 45000 Kg
Velocity of train car B = 0 m/s
Momentum is simply defined as the product of mass and velocity. Mathematically, it can be expressed as:
Momentum = mass × velocity
With the above formula, the momentum of train car A before collision can be obtained as follow:
Mass of train car A = 45000 Kg
Velocity of train car A = 4 m/s
Momentum of train car A =?
Momentum = mass × velocity
Momentum = 45000 × 4
Momentum of train car A = 180000 Kgm/s
Answer:
the person will be in the shore at 10.73 minutes after launch the shoe.
Explanation:
For this we will use the law of the lineal momentum.
Also,
L = MV
where M is de mass and V the velocity.
replacing,
wher Mi y Vi are the initial mass and velocity, Mfp y Vfp are the final mass and velocity of the person and Mfz y Vfz are the final mass and velocity of the shoe.
so, we will take the direction where be launched the shoe as negative. then:
(70)(0) = (70-0.175)() + (0.175)(-3.2m/s)
solving for ,
=
= 0.008m/s
for know when the person will be in the shore we will use the rule of three as:
1 second -------------- 0.008m
t seconds-------------- 5.15m
solving for t,
t = 5.15m/0.008m
t = 643.75 seconds = 10.73 minutes