Answer:
Voltage across the capacitor is 30 V and rate of energy across the capacitor is 0.06 W
Explanation:
As we know that the current in the circuit at given instant of time is
i = 2.0 mA
R = 10 k ohm
now we know by ohm's law



so voltage across the capacitor + voltage across resistor = V


Now we know that

here rate of change in energy of the capacitor is given as



Answer:

Explanation:
given,
frequency of tuba.f = 64 Hz
Speed of train approaching, v = 8.50 m/s
beat frequency = ?
using Doppler's effect formula

v_s is the velocity of the source
v is the speed of sound, v = 340 m/s
now,

f' = 65.64 Hz
now, beat frequency is equal to



hence, beat frequency is equal to 1.64 Hz
Continuous. Discrete values are values like 1, 2, 3, 4, etc. - they're values that are <em>distinct</em>, and typically there's some idea of a <em>next </em>and a <em>previous </em>value. When we're counting whole numbers, there's a definitive answer to which number comes after, and which number comes before. With continuous values, there's no real "next" or "last" value.
Motion is measured with <em>continuous </em>values; a train might move 300 yards in 1 minute, but we can look at smaller and smaller chunks of time to keep getting shorter and shorter distances. There is no <em />"next" distance the train moves after those 300 yards - it just doesn't make sense for there to be.
It's also measured <em>quantitatively</em>, not <em>qualitatively</em>. This just means that we can use numerical values to measure it, rather than other descriptors like color, smell, or taste.
Answer:
it is True as the operational definition of electric current.
Explanation:
The definition of electric current is
I = dQ / dt
By convention the direction of the current is the direction in which a positive charge flows.
The initial expression is the derivative that is the change of the load in the unit of time and this occurs in a given cross-sectional cable.
The proposed definition is the same as this, so it is True as the operational definition of electric current.
Answer:
Explanation:
Let the velocity after first collision be v₁ and v₂ of car A and B . car A will bounce back .
velocity of approach = 1.5 - 0 = 1.5
velocity of separation = v₁ + v₂
coefficient of restitution = velocity of separation / velocity of approach
.8 = v₁ + v₂ / 1.5
v₁ + v₂ = 1.2
applying law of conservation of momentum
m x 1.5 + 0 = mv₂ - mv₁
1.5 = v₂ - v₁
adding two equation
2 v ₂= 2.7
v₂ = 1.35 m /s
v₁ = - .15 m / s
During second collision , B will collide with stationary A . Same process will apply in this case also. Let velocity of B and A after collision be v₃ and v₄.
For second collision ,
coefficient of restitution = velocity of separation / velocity of approach
.5 = v₃ + v₄ / 1.35
v₃ + v₄ = .675
applying law of conservation of momentum
m x 1.35 + 0 = mv₄ - mv₃
1.35 = v₄ - v₃
adding two equation
2 v ₄= 2.025
v₄ = 1.0125 m /s
v₃ = - 0 .3375 m / s