So in order to answer this we need the number of moles of oxygen and the right stoichiometry.
The balanced reaction should be 2HgO --> 2Hg + O2, therefore 2 moles of mercury are produced for every one mole of oxygen gas. Since we have the mass of O2 we can calculate the moles as moles = mass/RMM where RMM is the relative molecular mass of O2, which is 32 g/mol. Therefore the number of moles = 125/16 = 3.9 mol.
Since 2 moles of Hg are produced for every one mole of O2, the number of moles of Hg = 3.9*2 = 7.8 mol.
Answer:
The hot water remains at the top of chilled water.
Explanation:
The hot water remains at the top of chilled water because hot water has less denser as compared to chilled water. Due to higher density of chilled water, it remains at the bottom due to its greater mass while on the other hand, the hot freshwater goes upward and spreads at the top of the chilled water due to lower mass so when the hot water is added to the chilled water, hot water remains at the top.
Answer:
The mass of N a H C O 3 present is 2.431 g
Explanation:
The sample contains 57.2 % N a H C O 3 by mass.
To find the mass of N a H C O 3 in the sample, we need to find what the equivalent of 57.2 %.
Mass of N a H C O 3 = Percentage Composition * Mass of sample
Mass of N a H C O 3 = 57.2 / 100 * 4.25
Mass of N a H C O 3 = 2.431 g
The mass of N a H C O 3 present is 2.431 g
Any elements in the same periodic group as oxygen such as sulfur, as elements are grouped together through similar properties