The resistance in this circuit is 39.8 ohms.
Explanation:
Any circuit having resistor, battery and ammeter connected in series will obey the ohm's law in basic case. So according to the Ohm's law, the current flowing in the circuit through the ammeter will be equal to the voltage shown in the voltmeter or battery and resistor is the proportionality constant. So with this law
V = IR
So, Resistance R = V/I
As the voltage is given as 23.90 V and the current is given as 0.6 A, then resistance is
R = 23.90/0.6 = 39.8 ohms.
So, the resistance in this circuit is 39.8 ohms.
Explanation:
Crumple zones are sections in cars that are designed to crumple up when the car encounters a collision. Crumple zones minimize the effect of the force in an automobile collision in two ways. By crumpling, the car is less likely to rebound upon impact, thus minimizing the momentum change and the impulse.
Answer:
P₁ = 2.215 10⁷ Pa, F₁ = 4.3 106 N,
Explanation:
This problem of fluid mechanics let's start with the continuity equation to find the speed of water output
Q = A v
v = Q / A
The area of a circle is
A = π r² = π d² / 4
Let's look at the speeds at each point
v₁ = Q / A₁ = Q 4 /π d₁²
v₁ = 10 4 /π 0.5²
v₁ = 50.93 m / s
v₂ = Q / A₂
v₂ = 10 4 /π 0.25²
v₂ = 203.72 m / s
Now we can use Bernoulli's equation in the colon
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂
Since the tube is horizontal y₁ = y₂. The output pressure is P₂ = Patm = 1.013 10⁵ Pa, let's clear
P₁ = P2 + ½ rho (v₂² - v₁²)
P₁ = 1.013 10⁵ + ½ 1000 (203.72² - 50.93²)
P₁ = 1.013 10⁵ + 2.205 10⁷
P₁ = 2.215 10⁷ Pa
la definicion de presion es
P₁ = F₁/A₁
F₁ = P₁ A₁
F₁ = 2.215 10⁷ pi d₁²/4
F₁ = 2.215 10⁷ pi 0.5²/4
F₁ = 4.3 106 N