Gravity on the surface = 4 m/s^2
Now, the acceleration due to centripetal motion, a = v^2/R
Where,
v= 10^3 m/s, R = 10^6 m
Then,
a = (10^3)^2/(10^6) = 1 m^2/s
The net gravitational acceleration = 4-1 = 3 m/s^2
The reading on the spring scale = ma = 40*3 = 120 N
Answer : 12.7 cm = 127. mm
From the point of view of the northern hemisphere:
The sun starts out the year at the Spring equinox, March 21,
Right Ascension 0, Declination 0.
3 months later, Summer solstice, June 21
RA = 6 hours, Dec. = +23.5°
3 months later, Fall equinox, September 21,
RA = 12 hours, Dec. = 0
3 months later, Winter solstice, December 21,
RA = 18 hours, Dec. = -23.5°
Actual displacement that he required to move
towards North
Displacement that he moved due to snow is
at 47 degree North of East
now in vector component form we can say



now the displacement that is more required to reach the destination is given as



so the magnitude of the displacement is given as


its direction is given as

so it is 5.54 km towards 5.38 degree North of West.
Answer:
1. Velocity = 75.39 m/s
2. Air resistance
3. Mass of the coin
Explanation:
1. Given that the height of the building is 290 m. From Newton's third law of motion,
=
+ 2gh
where: V is the final velocity of the coin, U is the initial velocity, g is the force of gravity and h is the height.
Since the coin was dropped from a height, its initial velocity is zero. The force of gravity is taken as 9.8 m/
, so that:
= 0 + 2 x 9.8 x 290
= 5684
V = 
= 75.3923
The velocity with which the coin hits the ground is 75.39 m/s.
2. Air resistance: During the free fall of the coin, the direction of wind flow could either cause an increase or decrease the value predicted.
ii. Mass of the coin: This can also affect the predicted value.