Answer:
The angle of incidence when the reflected ray is perpendicular to the incident ray = 45°
Explanation:
According to Snell's Law,
n₁ sin θ₁ = n₂ sin θ₂
When the angle between the incident ray and reflected ray is 90°, the angle of incidence is θ₁ and the angle of reflection, θ₂ = 90° - θ₁ and the index of refraction in the Snell's Law for both media would be the same, n₁ = n₂ = n
n sin θ₁ = n sin (90° - θ₁)
Note that from trigonometric relations,
Sin (90° - θ₁) = cos θ₁
n sin θ₁ = n cos θ₁
(sin θ₁)/(cos θ₁) = 1
tan θ₁ = 1
θ₁ = arctan 1 = 45°
Hope this Helps!!!
Answer:
magnitude of the frictional torque is 0.11 Nm
Explanation:
Moment of inertia I = 0.33 kg⋅m2
Initial angular velocity w° = 0.69 rev/s = 2 x 3.142 x 0.69 = 4.34 rad/s
Final angular velocity w = 0 (since it stops)
Time t = 13 secs
Using w = w° + §t
Where § is angular acceleration
O = 4.34 + 13§
§ = -4.34/13 = -0.33 rad/s2
The negative sign implies it's a negative acceleration.
Frictional torque that brought it to rest must be equal to the original torque.
Torqu = I x §
T = 0.33 x 0.33 = 0.11 Nm
If a Substance conducts heat easily then it is considered a good conductor, since the electrons can move freely within the substance.
Answer:
mechanical energy
Explanation:
In an electric motor the electrical energy is converted into mechanical energy. Almost every mechanical movement that we see around us is accomplished by an electric motor. Electric machines are a means of converting energy. Motors take electrical energy and produce mechanical energy.
Answer:
The magnitude of each force is 2.45 x 10⁻¹⁶ N
Explanation:
The charge of proton, +q = 1.603 x 10⁻¹⁹ C
The charge of electron, -q = 1.603 x 10⁻¹⁹ C
Distance between the two charges, r = 971 nm = 971 x 10⁻⁹ m
Apply Coulomb's law;

where;
k is Coulomb's constant = 8.99 x 10⁹ Nm²/C²
q₁ and q₂ are the charges of proton and electron respectively
F is the magnitude of force between them
Substitute in the given values and solve for F

Therefore, the magnitude of each force is 2.45 x 10⁻¹⁶ N