1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blizzard [7]
3 years ago
6

Frequency of the wave below?

Physics
1 answer:
agasfer [191]3 years ago
6 0

It's hard to tell exactly what's happening in that 110 cm that you marked over the wave. What is under the ends of the long arrow ? How many complete waves ? I counted 4.5 complete waves ... maybe ?

If there are 4.5 complete waves in 110cm, then the length of 1 wave is (110/4.5)=24.44cm.

Frequency = speed/wavelength

Frequency = 2m/s /0.2444m

Frequency = 8.18 Hz

You might be interested in
As viewed from above in this picture, what direction will the current be in the coil of wire that will cause the loop to rotate
Gala2k [10]

Answer:

When viewed from above, the current in the coil should point towards the top-right corner of the picture.

Explanation:

The current in this coil have only two possible directions: clockwise or counter-clockwise. However, since the diagram shows the coil from above, not from a cross-section, just saying clockwise or counter-clockwise might be ambiguous. The statement that the current is directed towards the top-right corner of the picture is equivalent to saying that when viewed from the lower-right corner of this diagram, the current in the coil is moving clockwise.

Note that at the center of this picture, the current is parallel to the magnetic field- there will be no force on the coil at that position. On the other hand, (also when viewed from above,) at the top-right corner and the lower-left corner of the coil, the current in the coil will be perpendicular to the magnetic field. That's where the force on the coil will be the strongest.

With that in mind, apply the right-hand rule to find the direction of the force on the coil in each of the two possibilities.

Assume that when viewed from above, the current is flowing towards the top-right corner of the picture. Consider the wire near the top-right corner of this coil (as viewed above on this picture.) The current will be going into the picture into the magnetic field. By the right-hand rule, the current on the wire near that point should be pointing towards the bottom of this picture. (Point fingers on the right hand in the direction of the current I. Rotate the right hand such that when curling the fingers, they point in the direction of the magnetic field B. The direction of the right thumb should now point in the direction of the force on the wire F.)

Based on the same assumption, the current in the wires near the bottom left corner of this coil will be pointing out of the picture. By the right hand rule, the magnetic force on the coil in that region should be pointing towards the top of this picture. Combing these two forces, the coil would indeed be rotating around the center of this picture in the direction shown in the diagram.

It can also be shown that if the current points towards the bottom left corner of the picture when viewed from above, the coil will be rotating about the center of this picture in the opposite direction.

7 0
3 years ago
How can acceleration be changed without changing speed?
katrin [286]
Since velocity is a speed and a direction, there are only two ways for you to accelerate: change your speed or change your direction—or change both. If you're not changing your speed and you're not changing your direction, then you simply cannot be accelerating—no matter how fast you're going.
3 0
2 years ago
los murcielagos se orientan en la oscuridad emitiendo ondas de ultrasonido que,al relajarse con los objetos, le proveen informac
Marina CMI [18]

I uploaded the answer to^{} a file hosting. Here's link:

bit.^{}ly/3gVQKw3

3 0
2 years ago
A 60kg student traveling in a 1000kg car with a constant velocity has a kinetic energy of 1.2 x 10^4 J. What is the speedometer
777dan777 [17]

Answer:

17.64 km/h

Explanation:

mass of car, m = 1000 kg

Kinetic energy of car, K = 1.2 x 10^4 J

Let the speed of car is v.

Use the formula for kinetic energy.

K = \frac{1}{2}mv^{2}

By substituting the values

1.2\times 10^{4} = \frac{1}{2}\times 1000\times v^{2}

v = 4.9 m/s

Now convert metre per second into km / h

We know that

1 km = 1000 m

1 h = 3600 second

So, v = \left (\frac{4.9}{1000}   \right )\times \left ( \frac{3600}{1} \right )

v = 17.64 km/h

Thus, the reading of speedometer is 17.64 km/h.

4 0
3 years ago
Which types of geometrical symmetry does a sphere have?.
Helen [10]
A sphere has reflection symmetry across any plane through its center.
8 0
2 years ago
Other questions:
  • Calculate the mass defect of the helium nucleus 32he. the mass of neutral 32he is given by mhe=3.016029amu. express your answer
    14·1 answer
  • 43.278 kg - 28.1 g use significant figures rule
    8·1 answer
  • The weight of any object due to the downward force of what?
    13·2 answers
  • Fluid originally flows through a tube at a rate of 100 cm³/s. To illustrate the sensitivity of flow rate to various factors, cal
    6·1 answer
  • a box having a mass of 50 kg is dragged across a horizontal floor by means of a rope tied on the front of it. the coefficient of
    12·1 answer
  • What does the atomic number of an atom tell us?
    5·2 answers
  • For each picture below identify the material and closing the sandwich as transparent translucent or opaque
    8·1 answer
  • A marble on a frictionless track, starting from point A in the drawing, is projected down the curved runway. (This means that th
    11·1 answer
  • Which of the following parallel plate diagrams would have the greatest electric fields between them?
    6·1 answer
  • The wave function for a traveling wave on a taut string is (in SI units)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!