Answer:
Tiene que patear el balón cerca del nivel del suelo para conseguir el gol.
Explicación:
Leo Messi necesita patear el balón no en el aire, en el nivel del suelo para poder meter el gol para el equipo. Delante del fútbol hay muchos jugadores del equipo contrario dispuestos a detener el tiro libre de Leo Messi. Cuando Leo Messi patea el balón en el aire, los jugadores también saltan en el aire para detener el tiro libre que atraviesa la cabeza y para conseguir el gol Leo Messi tiene que evitar patear el balón en el aire y patear el balón cerca del nivel del suelo. que puede atravesar a los jugadores oponentes cuando lo saltan para detener el balón a través de sus cabezas para que el balón pase por debajo de sus pies y llegue a la portería.
Answer:
Angular displacement of the turbine is 234.62 radian
Explanation:
initial angular speed of the turbine is



similarly final angular speed is given as



angular acceleration of the turbine is given as

now we have to find the angular displacement is given as



In physics, weight is a measure of the force exerted by gravity on a mass.
You probably know that you weigh less on the Moon than on Earth. For instance, if you weigh 100. pounds on Earth, you will weigh 16.6 pounds on the Moon. But, if your mass on Earth is 100 kg, your mass on the Moon is... also 100 kg. Because the amount of matter you have does not change from the Earth to the Moon, but the gravitational force on the Earth is stronger than on the Moon, so you weigh more on Earth.
You can think of gravity pulling a mass toward the center of an object like the Earth. It pulls a lot harder for more massive objects like the Earth than for the Moon. That's why there's a difference in weight.
As a caveat, adding energy or mass to an object will affect its mass. Additionally, general relativity informs us that when something as traveling very near the speed of light, the whole idea of mass equivalency is not exactly true...
5lbs is greater.
Hope that helps!
Answer:
a) m = 59.63 [kg]
b) Wm = 95.41 [N]
Explanation:
El peso de un cuerpo se define como el producto de la masa por la aceleración gravitacional. DE esta manera tenemos:
W = m*g
Donde:
m = masa [kg]
g = gravedad = 9.81 [m/s^2]
m = W / g
m = 585 / 9.81
m = 59.63 [kg]
Es importante aclarar que la masa se conserva independientemente de la ubicación del cuerpo en el espacio.
Por ende su masa sera la misma en la luna.
El peso en la luna se calcula como Wm y es igual a:
Wm = 59.63 * 1.6 = 95.41 [N]