1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren2701 [21]
2 years ago
6

Which event in the “The Medicine Bag” is most symbolic of Martin beginning to connect with his Sioux heritage?

Physics
2 answers:
notka56 [123]2 years ago
8 0

Answer:

A

Explanation:

on edge :)

Sophie [7]2 years ago
6 0

Answer:

A- Martin brings his friends home to meet grandpa.

Explanation:

took the test.

You might be interested in
How long does it take a wave to travel 1200 meters with the speed of 3 X 108m/sec?
Vladimir79 [104]
Around 3.70 seconds unless traveling through media

5 0
3 years ago
Didn't know what type of science it was? But pls helpp
Alla [95]
The answer is the third one down. New evidence may contradict the old evidence of a certain theory.
8 0
3 years ago
True or false describing a metal as malleable means that it can be pounded into a new shape
vampirchik [111]
The answer is True.

Dictionary definition of <span>malleable. 
</span>
(of a metal or other material) able to be hammered or pressed permanently out of shape without breaking or cracking. 
3 0
3 years ago
Two massless bags contain identical bricks, each brick having a mass M. Initially, each bag contains four bricks, and the bags m
stepladder [879]

Answer: F_{2}=\frac{3}{4}F_{1}

Explanation:

According to Newton's law of universal gravitation:

F=G\frac{m_{1}m_{2}}{r^2}

Where:

F is the module of the force exerted between both bodies

G is the universal gravitation constant.

m_{1} and m_{2} are the masses of both bodies.

r is the distance between both bodies

In this case we have two situations:

1) Two bags with masses 4M and 4M mutually exerting a gravitational attraction F_{1} on each other:

F_{1}=G\frac{(4M)(4M)}{r^2}   (1)

F_{1}=G\frac{16M^2}{r^2}   (2)

F_{1}=16\frac{GM^2}{r^2}   (3)

2) Two bags with masses 2M and 6M mutually exerting a gravitational attraction F_{2} on each other (assuming the distance between both bags is the same as situation 1):

F_{2}=G\frac{(2M)(6M)}{r^2}   (4)

F_{2}=G\frac{12M^2}{r^2}   (5)

F_{2}=12\frac{GM^2}{r^2}   (6)

Now, if we isolate \frac{GM^2}{r^2} from (3):

\frac{F_{1}}{16}=\frac{GM^2}{r^2}   (7)

Substituting \frac{GM^2}{r^2}  found in (7) in (6):

F_{2}=12(\frac{F_{1}}{16})   (8)

F_{2}=\frac{12}{16}F_{1}   (9)

Simplifying, we finally get the expression for F_{2}  in terms of F_{1} :

F_{2}=\frac{3}{4}F_{1}  

5 0
3 years ago
A pot on the stove contains 200 g of water at 20°C. An unknown mass of ice that is originally at −10°C is placed in an identical
Mumz [18]

Answer:

a) The mass of the ice is smaller than the mass of the water

b) The ice reaches first 80°C ,

Explanation:

Since the heat Q that should be provided to ice

Q = sensible heat to equilibrium temperature (as ice) + latent heat + sensible heat until final temperature ( as water)

m ice * c ice * ( T equil -T initial  ) + m ice* L + m ice* c water * ( T final - T equil)

and the heat Q that should be provided to water is

Q= m water * c water * ( T final - T equil )

since the rate of heat addition q = constant and the time t taken to reach the final temperature is the same , then the heat absorbed Q=q*t is the same for both, therefore

m water * c water *  ( T final - T equil ) = m ice* [c ice *( T equil -T initial  ) + L + c water * ( T final - T equil)]

m water/ m ice =  [c ice * ( T equil -T initial  )  + L + c water * ( T final - T equil)]/ [ c water * ( T final - T equil)]

m water/ m ice = [c ice * ( T equil -T initial  )  + L ]/[c water * ( T final - T equil) ] + 1

since  [c ice * ( T equil -T initial  )  + L ]/[c water * ( T final - T equil) ] >0 , then

m water/ m ice > 1

m water > m ice

so the mass of ice is smaller that the mass of water

b) Since the heat Q that should be provided to the ice, starting from 55°C mass would be

Q ice= m ice * c water * ( T final2 - T final1 )

and for the water mass

Q water = m water * c water * ( T final2 - T final1 )

dividing both equations

Q water / Q ice = m water / m ice >1

thus

Q water > Q ice

since the heat addition rate is constant

Q water = q* t water and Q ice=q* t ice

therefore

q* t water > q* t ice

t water >  t ice

so the time that takes to reach 80°C is higher for water , thus the ice mass reaches it first.

5 0
3 years ago
Other questions:
  • there are 1000 g in every kilogram of a box has a mass of 483 g what is the mass of the box in kilogram
    14·1 answer
  • even though the sun has _____mass than earth the moon orbits earth because it's closer to earth than to the sun
    12·2 answers
  • Which element is most likely to bend without breaking?
    5·2 answers
  • With a doctor’s permission, how many servings of the product could a person eat before reaching 100 percent of their allowable d
    13·1 answer
  • Assessment started: undefined.
    8·1 answer
  • The human vocal tract is a pipe that extends about 17 cm from the lips to the vocal folds (also called "vocal cords") near the m
    15·1 answer
  • A skier is gliding down a slope at a constant speed. what energy transformation is taking place?
    12·1 answer
  • .Loggers cut down 2 identical trees. One tree was cut down with a hand saw and one was cut down with an electric saw. Which acti
    13·1 answer
  • Help me please pleasee
    9·1 answer
  • Anyone know this... pls help its for a grade​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!