1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iren2701 [21]
2 years ago
6

Which event in the “The Medicine Bag” is most symbolic of Martin beginning to connect with his Sioux heritage?

Physics
2 answers:
notka56 [123]2 years ago
8 0

Answer:

A

Explanation:

on edge :)

Sophie [7]2 years ago
6 0

Answer:

A- Martin brings his friends home to meet grandpa.

Explanation:

took the test.

You might be interested in
Explain how tidal forces are causing Earth to slow down.
dybincka [34]

Answer: The tidal forces exerted by the moon are directly associated with the earth's rotation. Due to the strong gravitational pull of the moon, the tidal bulging appears on both the sides on earth and these are region of high tide, and there is gradual rise and fall of sea level.

Because of these tidal effect, the earth is able to rotate only once in each of the orbital period.

6 0
3 years ago
Which element contains a full 2p orbital in its valence shell
alex41 [277]
So Neon ( Ne) is the correct answer.

3 0
3 years ago
Read 2 more answers
A wave on a string is described by y(x, t) = (3.0 cm) × cos[2π(x/(2.4 m + t/(0.20 s))], where x is in m and t in s.
Len [333]

Corrected and Formatted Question:

A wave on a string is described by y(x, t) = (3.0 cm) × cos[2π(x/(2.4 m) + t/(0.20 s))], where x is in m and t in s.

(a) In what direction is this wave traveling?

(b) What are the wave speed, frequency, and wavelength?

(c) At t = 0.50 , what is the displacement of the string at x = 0.20 m?

Answer:

The wave is travelling in the negative x direction

The wave speed = 12.0m/s

The frequency = 5Hz

The wavelength = 2.4m

The displacement at t = 0.50s and x = 0.20m is -0.029m

Explanation:

The general wave equation is given by;

y(x, t) = y cos (2\pi(x/λ) - 2\pift)    --------------------------------(i)

Where;

y(x, t) is the displacement of the wave at position x and a given time t

y = amplitude of the wave

f = frequency of the wave

λ = wavelength of the wave

Given;

y(x, t) = (3.0 cm) × cos[2π(x/(2.4 m) + t/(0.20 s))]   ------------------(ii)

Which can be re-written as;

y(x, t) = (3.0 cm) × cos[2π(x/(2.4 m)) + 2π(t/(0.20 s))]  -------------(iii)

Comparing equations (i) and (iii) we have that;

=> 2π(x/(2.4 m) = 2π(x/λ)

=> λ = 2.4m

Therefore the wavelength of the wave is 2.4m

Also, still comparing the two equations;

=> 2π(t/(0.20 s) = 2πft

=> f = 1 / 0.20

=> f = 5Hz

Therefore the frequency of the wave is 5Hz

To get the wave speed (v), it is given by;

v = f x λ

Where f = 5Hz and λ = 2.4m

=> v = 5 x 2.4

=> v = 12.0m/s

Therefore, the speed of the wave is 12.0m/s

At t = 0.50s and x = 0.20m;

The displacement, y(x,t) of the string wave is given by

y(x, t) = (3.0 cm) × cos[2π(x/(2.4 m) + t/(0.20 s))]

<em>Convert the amplitude of 3.0cm to m</em>

=> 3.0cm = 0.03m

<em>Substitute this back into the equation</em>

=> y(x, t) = (0.03m) × cos[2π(x/(2.4 m) + t/(0.20 s))]

<em>Substitute the values of t and x into the equation above;</em>

=> y(x, t) = (0.03m) × cos[2π((0.20)/(2.4 m) + 0.50/(0.20 s))]

<em>Carefully solve the equation</em>

=> y(x, t) = (0.03m) × cos[2π((0.20)/(2.4 m)) + 2π(0.50/(0.20 s))]

=> y(x, t) = (0.03m) × cos[0.08π + 5π]

=> y(x, t) = (0.03m) × cos[5.08π]

=> y(x, t) = (0.03m) × cos[15.96]

=> y(x, t) = (0.03m) × cos[15.96]

=> y(x, t) = (0.03m) × -0.9684

=> y(x, t) = 0.029m

Therefore the displacement at those points is -0.029m

Also, the sign of the displacement shows that the direction of the wave is in the negative x direction.

8 0
3 years ago
Number of complete 90.9 MHz radio waves over a 1.50 km distance
zimovet [89]
You could answer this right away IF you knew the length of each wave, right ?

Well,  Wavelength = (speed) / (frequency).

Speed = 3 x 10⁸ m/s  (the speed of light)
and
Frequency = 90.9 x 10⁶ Hertz.

So the length of each wave is  3 x 10⁸ / 90.9 x 10⁶  meters.

To answer the question, see how many pieces you have to cut
that 1.5 km into, in order for each piece to be 1 wavelength. 
It'll be

(1,500 meters) divided by (3 x 10⁸ meters/sec) / (90.9 x 10⁶ Hz)

To divide by a fraction, flip the fraction and then multiply:

(1500 meters) times (90.9 x 10⁶ Hz)/(3 x 10⁸ meters/sec)

=   454.5
5 0
3 years ago
Which type of acceleration would be best if you were merging onto the interstate?
kondaur [170]

Answer:

If merging onto an interstate, it is best to merge at the speed of the moving traffic.

Explanation:

As a driver, you cannot always count on the other drivers to see you wanting to merge onto the interstate, and even if they see you, they might not be willing to stop just so you merge, therefore it is best advised to look for a gap in the traffic and merge at the traffic speed.

4 0
3 years ago
Other questions:
  • Consider a Hydrogen atom with the electron in the n 8 shell. What is the energy of this system? (The magnitude of the ground sta
    15·1 answer
  • The additional product of the nuclear fission reaction shown in the
    9·1 answer
  • An object with total mass mtotal = 14.6 kg is sitting at rest when it explodes into three pieces. One piece with mass m1 = 4.9 k
    9·1 answer
  • A ladder 10 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of 1.4 ft/s,
    9·1 answer
  • Time-outs are ineffective because
    12·2 answers
  • A 150 g egg is dropped from 3.0 meters. The egg is
    8·1 answer
  • A weight lifter raises a 1600 N barbell to a height of 2.0 meters. How much work was done? W = Fd
    13·2 answers
  • How much heat is required to heat 2 kg of water from 25°C to 40°C?
    8·1 answer
  • What is Shortening melting
    13·1 answer
  • If 100g of an isotope undergoes two half-lives, how many grams will be remaining?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!