1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
satela [25.4K]
1 year ago
8

The magnetic field 40.0 cm away from a long, straight wire carrying current 2.00 A is 1.00μT. (a) At what distance is it 0.100μ

Physics
1 answer:
maw [93]1 year ago
4 0

The distance should be 4m from the wire in order to get the magnetic field of 0.100μ .

  • The magnitude and direction of the magnetic field due to a straight  wire carrying current can be calculated using the previously mentioned Biot-Savart law. Let "I" be the current flowing in a straight line and "r" be the distance. Then the magnetic field produced by the wire at that particular point is given by  B=\frac{u_0I}{2\pi r}  ...(1)
  • Since the wire is assumed to be very long, the magnitude of the magnetic field depends on the distance of the point from the wire rather than the position along the wire.

It is given that magnetic field 40.0 cm away from a straight wire is  1.00μT having  current 2.00 A .

From equation (1)  magnetic field 40.0 cm = 0.4m away from a straight wire is 1.00μT which is given by    1.00=\frac{u_0I}{2\pi \times0.4}      .....(2)

From equation (1)  magnetic field 'r' m away from a straight wire is 0.100μT which is given by    0.100=\frac{u_0I}{2\pi \times r}       ...(3)

On dividing equation (2) by (3) , we get

             \frac{1}{0.1} =\frac{r}{0.4} \\\\r=4m

Learn more about magnetic field here :

brainly.com/question/27939568

#SPJ4

 

You might be interested in
A 0.5 kg basketball moving 5 m/s to the right collides with a 0.05 kg tennis
Natali5045456 [20]

Answer:

A. 1.4 m/s to the left

Explanation:

To solve this problem we must use the principle of conservation of momentum. Let's define the velocity signs according to the direction, if the velocity is to the right, a positive sign will be introduced into the equation, if the velocity is to the left, a negative sign will be introduced into the equation. Two moments will be analyzed in this equation. The moment before the collision and the moment after the collision. The moment before the collision is taken to the left of the equation and the moment after the collision to the right, so we have:

M_{before} = M_{after}

where:

M = momentum [kg*m/s]

M = m*v

where:

m = mass [kg]

v = velocity [m/s]

(m_{1} *v_{1} )-(m_{2} *v_{2})=(m_{1} *v_{3} )+(m_{2} *v_{4})

where:

m1 = mass of the basketball = 0.5 [kg]

v1 = velocity of the basketball before the collision = 5 [m/s]

m2 = mass of the tennis ball = 0.05 [kg]

v2 = velocity of the tennis ball before the collision = - 30 [m/s]

v3 =  velocity of the basketball after the collision [m/s]

v4 = velocity of the tennis ball after the collision = 34 [m/s]

Now replacing and solving:

(0.5*5) - (0.05*30) = (0.5*v3) + (0.05*34)

1 - (0.05*34) = 0.5*v3

- 0.7 = 0.5*v

v = - 1.4 [m/s]

The negative sign means that the movement is towards left

3 0
2 years ago
A highway curves to the left with radius of curvature of 36 m and is banked at 28 ◦ so that cars can take this curve at higher s
iVinArrow [24]

Answer: 30.34m/s

Explanation:

The sum of forces in the y direction 0 = N cos 28 - μN sin28 - mg

Sum of forces in the x direction

mv²/r = N sin 28 + μN cos 28

mv²/r = N(sin 28 + μcos 28)

Thus,

mv²/r = mg [(sin 28 + μ cos 28)/(cos 28 - μ sin 28)]

v²/r = g [(sin 28 + μ cos 28)/(cos 28 - μ sin 28)]

v²/36 = 9.8 [(0.4695 + 0.87*0.8829) - (0.8829 - 0.87*0.4695)]

v²/36 = 9.8 [(0.4695 + 0.7681) / (0.8829 - 0.4085)]

v²/36 = 9.8 (1.2376/0.4744)

v²/36 = 9.8 * 2.6088

v²/36 = 25.57

v² = 920.52

v = 30.34m/s

5 0
3 years ago
Consider the following scenario: You live near the shoreline and hear a report that an earthquake hit the ocean floor near your
Harlamova29_29 [7]
A. a tsunami
(if the earthquake is hitting the ocean, the water will get effected)
5 0
3 years ago
Read 2 more answers
A normal walking speed is around 2.0 m/s . how much time t does it take the box to reach this speed if it has the acceleration 5
creativ13 [48]

Given:

u(initial velocity)=0

a=5.54m/s^2

v(final velocity)=2 m/s

v=u +at

Where v is the final velocity.

u is the initial velocity

a is the acceleration.

t is the time

2=0+5.54t

t=2/5.54

t=0.36 sec


6 0
3 years ago
The format specifier ________ is a placeholder for an int value. %d %n %int %s
Grace [21]

%d is a format specifier that is a placeholder for an int value. It tells the compiler that we want to print an integer value that is present in variable a. In this way there are several format specifiers in c.

8 0
3 years ago
Other questions:
  • Compared to its weight on Earth, a 5kg object on the moon will weigh
    5·1 answer
  • In a real isothermal expansion, the temperature of the surroundings must be________the temperature of the gas.
    5·1 answer
  • Give an example of the follow components of culture in your life and explain the role it plays.
    13·2 answers
  • Which way does wind blow
    13·2 answers
  • How do we find the acceleration from a velocity vs. time graph
    15·1 answer
  • What does displacement describe?
    10·1 answer
  • The front and rear sprockets on a bicycle have radii of 8.40 and 4.91 cm, respectively. The angular speed of the front sprocket
    10·2 answers
  • Which geological features are produced when continental plates converge?
    14·1 answer
  • Momentum is mass times velocity, so another way to think of momentum is ____ in motion.
    9·1 answer
  • Which option best describes the average acceleration from 40 to 70 s?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!