Dependent variable is your answer.
A) average acceleration = final velocity - initial velocity / time
= 7700 - 0 / 11
= 700ms^-2
B) force = mass x acceleration
= (3.05 x 105) x 700
= 320.25 x 700
= 224,175N
Lift force exerted by the air on the rotors=143244 N
Explanation:
we use Newtons second law
F- (M+m)g=(M+m)a
F= lift force
m= mass of helicopter= 13000 Kg
M= mass of car= 2000 lb=907.2 kg
a= acceleration= 0.5 m/s²
g= acceleration due to gravity
F- (M+m)g=(M+m)a
F=(M+m)(a+g)
F=(13000+907.2)(0.5+9.8)
F=143244 N
Answer:
240 ohms
Explanation:
From Ohms law we deduce that V=IR and making R the subject of the formula then R=V/I where R is resistance, I is current and V is coltage across. Substituting 120 V for V and 0.5 A for A then
R=120/0.5=240 Ohms
Alternatively, resistance is equal to voltage squared divided by watts hence 
Grade 1: Stretching or slight tearing of the ligament with mild tenderness, swelling and stiffness. The ankle feels stable and it is usually possible to walk with minimal pain.
Grade 2: A more severe sprain, but incomplete tear with moderate pain, swelling and bruising. Although it feels somewhat stable, the damaged areas are tender to the touch and walking is painful.
Grade 3: This is a complete tear of the affected ligament(s) with severe swelling and bruising. The ankle is unstable and walking is likely not possible because the ankle gives out and there is intense pain.
source - https://www.rushcopley.com/health/physician-articles/varying-degrees-of-ankle-sprains/