Area of the sector = 1/2 * r^2 * theta where theta is the angle subtended by the arc at the center ( in radians)
In this case m < theta = 360 - 235 = 125 degrees or 2.182 radians
So, the area of shaded area = 1/2 * 20^2 * 2.182 = 436.4 in^2
4-3=1
1+8=9
The answer is 9
Answer:
sin (- 135°)= – sin 135°= – sin (1 × 90°+ 45°) = – cos 45° = – 1√2
cos (- 135°)= cos 135°= cos (1 × 90°+ 45°) = – sin 45°= – 1√2
tan (- 135°) = – tan 135° = – tan ( 1 × 90° + 45°) = – (- cot 45°) = 1
csc (- 135°)= – csc 135°= – csc (1 × 90°+ 45°)= – sec 45° = – √2
sec (- 135°)= sec 135°= sec (1 × 90°+ 45°)= – csc 45°= – √2
cot (- 135°) = – cot 135° = – cot ( 1 × 90° + 45°) = – (-tan 45°) = 1
Step-by-step explanation:
hope this helps