The answer is B. sedimentary rocks are created by the deposition and then lithification of sediments
Answer:
A. 97.8 mm
Explanation:
There are 10 divisions between 9 cm (90 mm) and the end of the ruler (10 cm or 100 mm).
Each division equals 1 mm.
Each 5 mm mark has a longer tick, and the dashed red line is between the 97 mm and 98 mm marks.
You would normally estimate to the nearest tenth of a division. An estimate of 0.8 mm is reasonable.
The length of the object is 97.0 mm + 0.8 mm = 97.8 mm.
B is wrong. You can't possibly estimate to the nearest hundredth of a division.
C is wrong. The dashed red line slightly before the 98 mm mark.
D is wrong. If the dashed red line were exactly on the 98 mm mark, you would record the measurement as 98.0 mm. This indicates that you measured the object to zero tenths on either side of the mark.
Answer:b.CaCl2
Explanation:
A compound is a substance resulting when two or more elements are are chemically bonded together either ionically or covalently in a fixed ratio.
From the given options we can see that the only compound there is CaCl2 which is an ionic compound in the fixed ratio of one calcium ion to two chloride ions.
Other options , Cu,Na and Nd are merely pure substance---Elements
Answer:
Explanation:
The combustion reaction of Octane is:
To calculate the mass of CO₂ and H₂O produced, we need to know the mass of octane combusted.
We calculate the mass of Octane from the given volume and density, using the following <em>conversion factors</em>:
Now we<u> convert 1.24 gallons to mL</u>:
- 1.24 gallon *
4693.4 mL
We <u>calculate the mass of Octane</u>:
- 4693.4 mL * 0.703 g/mL = 3.30 g Octane
Now we use the <em>stoichiometric ratios</em> and <em>molecular weights</em> to <u>calculate the mass of CO₂ and H₂O</u>:
- CO₂ ⇒ 3.30 g Octane ÷ 114g/mol *
* 44 g/mol = 10.19 g CO₂
- H₂O ⇒ 3.30 g Octane ÷ 114g/mol *
* 18 g/mol = 4.69 g H₂O
Answer:
There are four major classes of biological macromolecules (carbohydrates, lipids, proteins, and nucleic acids)
Explanation:
There are four major classes of biological macromolecules (carbohydrates, lipids, proteins, and nucleic acids), and each is an important component of the cell and performs a wide array of functions. ... Biological macromolecules are organic, meaning that they contain carbon.