"Balanced" means that if there's something pulling one way, then there's also
something else pulling the other way.
-- If there's a kid sitting on one end of a see-saw, and another one with the
same weight sitting on the other end, then the see-saw is balanced, and
neither end goes up or down. It's just as if there's nobody sitting on it.
-- If there's a tug-of-war going on, and there are 300 freshmen pulling on one
end of a rope, and another 300 freshmen pulling in the opposite direction on
the other end of the rope, then the hanky hanging from the middle of the rope
doesn't move. The pulls on the rope are balanced, and it's just as if nobody
is pulling on it at all.
-- If a lady in the supermarket is pushing her shopping cart up the aisle, and her
two little kids are in front of the cart pushing it in the other direction, backwards,
toward her. If the kids are strong enough, then the forces on the cart can be
balanced. Then the cart doesn't move at all, and it's just as if nobody is pushing
on it at all.
From these examples, you can see a few things:
-- There's no such thing as "a balanced force" or "an unbalanced force".
It's a <em><u>group</u> of forces</em> that is either balanced or unbalanced.
-- The group of forces is balanced if their strengths and directions are
just right so that each force is canceled out by one or more of the others.
-- When the group of forces on an object is balanced, then the effect on the
object is just as if there were no force on it at all.
You can describe the motion of an object by its position, speed, direction, and acceleration
Answer:
a) ΔV₁ = 21.9 V, b) U₀ = 99.2 10⁻¹² J, c) U_f = 249.9 10⁻¹² J, d) W = 150 10⁻¹² J
Explanation:
Let's find the capacitance of the capacitor
C =
C = 8.85 10⁻¹² (8.00 10⁻⁴) /2.70 10⁻³
C = 2.62 10⁻¹² F
for the initial data let's look for the accumulated charge on the plates
C =
Q₀ = C ΔV
Q₀ = 2.62 10⁻¹² 8.70
Q₀ = 22.8 10⁻¹² C
a) we look for the capacity for the new distance
C₁ = 8.85 10⁻¹² (8.00 10⁻⁴) /6⁴.80 10⁻³
C₁ = 1.04 10⁻¹² F
C₁ = Q₀ / ΔV₁
ΔV₁ = Q₀ / C₁
ΔV₁ = 22.8 10⁻¹² /1.04 10⁻¹²
ΔV₁ = 21.9 V
b) initial stored energy
U₀ =
U₀ = (22.8 10⁻¹²)²/(2 2.62 10⁻¹²)
U₀ = 99.2 10⁻¹² J
c) final stored energy
U_f = (22.8 10⁻¹²) ² /(2 1.04 10⁻⁻¹²)
U_f = 249.9 10⁻¹² J
d) the work of separating the plates
as energy is conserved work must be equal to energy change
W = U_f - U₀
W = (249.2 - 99.2) 10⁻¹²
W = 150 10⁻¹² J
note that as the energy increases the work must be supplied to the system
Answer:
a. 0.342 kg-m² b. 2.0728 kg-m²
Explanation:
a. Since the skater is assumed to be a cylinder, the moment of inertia of a cylinder is I = 1/2MR² where M = mass of cylinder and r = radius of cylinder. Now, here, M = 56.5 kg and r = 0.11 m
I = 1/2MR²
= 1/2 × 56.5 kg × (0.11 m)²
= 0.342 kgm²
So the moment of inertia of the skater is
b. Let the moment of inertia of each arm be I'. So the moment of inertia of each arm relative to the axis through the center of mass is (since they are long rods)
I' = 1/12ml² + mh² where m = mass of arm = 0.05M, l = length of arm = 0.875 m and h = distance of center of mass of the arm from the center of mass of the cylindrical body = R/2 + l/2 = (R + l)/2 = (0.11 m + 0.875 m)/2 = 0.985 m/2 = 0.4925 m
I' = 1/12 × 0.05 × 56.5 kg × (0.875 m)² + 0.05 × 56.5 kg × (0.4925 m)²
= 0.1802 kg-m² + 0.6852 kg-m²
= 0.8654 kg-m²
The total moment of inertia from both arms is thus I'' = 2I' = 1.7308 kg-m².
So, the moment of inertia of the skater with the arms extended is thus I₀ = I + I'' = 0.342 kg-m² + 1.7308 kg-m² = 2.0728 kg-m²