1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
victus00 [196]
3 years ago
9

Suppose we want to calculate the moment of inertia of a 56.5 kg skater, relative to a vertical axis through their center of mass

.
Required:
a. First calculate the moment of inertia (in kg-m^2) when the skater has their arms pulled inward by assuming they are cylinder of radius 0.11 m.
b. Now calculate the moment of inertia of the skater (in kg-m^2) with their arms extended by assuming that each arm is 5% of the mass of their body. Assume the body is a cylinder of the same size, and the arms are 0.875 m long rods extending straight out from their body being rotated at the ends.
Physics
1 answer:
kirza4 [7]3 years ago
5 0

Answer:

a. 0.342 kg-m² b. 2.0728 kg-m²

Explanation:

a. Since the skater is assumed to be a cylinder, the moment of inertia of a cylinder is I = 1/2MR² where M = mass of cylinder and r = radius of cylinder. Now, here, M = 56.5 kg and r = 0.11 m

I = 1/2MR²

= 1/2 × 56.5 kg × (0.11 m)²

= 0.342 kgm²

So the moment of inertia of the skater is

b. Let the moment of inertia of each arm be I'. So the moment of inertia of each arm relative to the axis through the center of mass is (since they are long rods)

I' = 1/12ml² + mh² where m = mass of arm = 0.05M, l = length of arm = 0.875 m and h = distance of center of mass of the arm from the center of mass of the cylindrical body = R/2 + l/2 = (R + l)/2 = (0.11 m + 0.875 m)/2 = 0.985 m/2 = 0.4925 m

I' = 1/12 × 0.05 × 56.5 kg × (0.875 m)² + 0.05 × 56.5 kg × (0.4925 m)²

= 0.1802 kg-m² + 0.6852 kg-m²

= 0.8654 kg-m²

The total moment of inertia from both arms is thus I'' = 2I' = 1.7308 kg-m².

So, the moment of inertia of the skater with the arms extended is thus I₀ = I + I'' = 0.342 kg-m² + 1.7308 kg-m² = 2.0728 kg-m²

You might be interested in
For many years Colonel John P. Stapp, USAF, held the world's land speed record. He participated in studying whether a jet pilot
Margarita [4]

Answer:

(a) -202 m/s²

(b) 198 m

Explanation:

Given data

  • Initial speed (v₀): 283 m/s

\frac{632mi}{h} .\frac{1609.34m}{1mi} .\frac{1h}{3600s} =283m/s

  • Final speed (vf): 0 (rest)
  • Time (t): 1.40 s

(a) The acceleration (a) is the change in the speed over the time elapsed.

a = (vf - v₀)/t = (0 - 283 m/s)/ 1.40s = -202 m/s²

(b) We can find the distance traveled (d) using the following kinematic expression.

y = v₀ × t + 1/2 × a × t²

y = 283 m/s × 1.40 s + 1/2 × (-202 m/s²) × (1.40 s)²

y = 198 m

3 0
3 years ago
During a marathon race, a runner’s blood flow increases to 10.0 times her resting rate. Her blood’s viscosity has dropped to 95.
Phoenix [80]

To solve the problem it is necessary to apply the equations related to the Poiseuilles laminar flow law, with which the stationary laminar flow ΦV of an incompressible and uniformly viscous liquid (also called Newtonian fluid) can be determined through a cylindrical tube of constant circular section. Mathematically this can be expressed:

Q = \frac{\Delta P \pi r^4}{8\eta l}

Where:

\eta_i = are the viscosities of the concrete before and after the increase

l = Length of the vessel

r_1, R_2 = Radio of the vessel before and after the increase

\Delta P= Change in the pressure

Q_{1,2} = The rates of flow before and after he increase

Our values are given as:

Q_2 = 10Q_1 \rightarrow 10 times her resting rate

\eta_2 = 0.95\eta_1 95% of its normal value

\Delta P_2 = 1.5\Delta P_1 Increase of 50%

Plugging known information to get

Q_1 = \frac{\Delta P \pi r^4}{8\eta l}

Q_1 8\eta_1 l = \Delta P_1 \pi r_1^4

r_1^4 = \frac{Q_1 8\eta_1 l}{\Delta P_1 \pi}

r_1 = (\frac{Q_1 8\eta_1 l}{\Delta P_1 \pi})^{1/4}

r_2 = (\frac{Q_2 8\eta_2 l}{\Delta P_2 \pi})^{1/4}

r_2 = (\frac{10Q_18 \times 0.95\eta_1 l}{1.5\Delta P_1 \pi})^{1/4}

r_2 = 1.586r_1

Therefore the factor of average radio of her blood vessels increased is 1.589 the initial factor after the increase.

7 0
4 years ago
Explain whether a particle moving in a straight line with constant speed does or does not have an acceleration. b) Explain wheth
Lelechka [254]

Answer:

A: No because it is nor changing speed or direction

B: Yes because it changes direction even though the speed is constant

Please Give Brainliest

5 0
3 years ago
Suppose that the dipole moment associated with an iron atom of an iron bar is 2.8 × 10-23 J/T. Assume that all the atoms in the
masya89 [10]

To solve this exercise it is necessary to apply the equations related to the magnetic moment, that is, the amount of force that an image can exert on the electric currents and the torque that a magnetic field exerts on them.

The diple moment associated with an iron bar is given by,

\mu = \alpha *N

Where,

\alpha = Dipole momento associated with an Atom

N = Number of atoms

\alpha y previously given in the problem and its value is 2.8*10^{-23}J/T

L = 5.8cm = 5.8*10^{-2}m

A = 1.5cm^2 = 1.5*10^{-4}m^2

The number of the atoms N, can be calculated as,

N = \frac{\rho AL}{M_{mass}}*A_n

Where

\rho = Density

M_{mass} = Molar Mass

A = Area

L = Length

A_n =Avogadro number

N = \frac{(7.9g/cm^3)(1.5cm)(5.8cm^2)}{55.9g/mol}(6.022*10^{23}atoms/mol)

N = 7.4041*10^{23}atoms

Then applying the equation about the dipole moment associated with an iron bar we have,

\mu = \alpha *N

\mu = (2.8*10^{-23})*(7.4041*10^{23})

\mu = 20.72Am^2

PART B) With the dipole moment we can now calculate the Torque in the system, which is

\tau = \mu B sin(90)

\tau = (20.72)(2.2)

\tau = 45.584N.m

<em>Note: The angle generated is perpendicular, so it takes 90 ° for the calculation made.</em>

3 0
3 years ago
which view of the macroeconomy suggests that the speed of adjustment Purcell correction would be very quick
horsena [70]

Rational expectations theory suggests that the speed of adjustment Purcell correction would be very quick.

<h3>What Is Rational Expectations Theory?</h3>

The rational expectations theory is a widely used concept and modeling technique in macroeconomics. Individuals make decisions based on three primary factors, according to the theory: their human rationality, the information available to them, and their past experiences.

The rational expectations hypothesis was originally suggested by John (Jack) Muth 1 (1961) to explain how the outcome of a given economic phenomena depends to a certain degree on what agents expect to happen.

  • People who have rational expectations always learn from their mistakes.
  • Forecasts are unbiased, and people make decisions based on all available information and economic theories.
  • People understand how the economy works and how government policies affect macroeconomic variables like the price level, unemployment rate, and aggregate output.

To learn more about Rational expectations theory from the given link

brainly.com/question/16479910

#SPJ4

7 0
2 years ago
Other questions:
  • A Ferris wheel is a vertical, circular amusement ride with radius 6.0 m. Riders sit on seats that swivel to remain horizontal. T
    15·1 answer
  • George determines the mass of his evaporating dish to be 3.375 g. He adds a solid sample to the evaporating dish, and the mass o
    13·1 answer
  • ((Doing a quiz need urgent help!!!)) Which states that a change in pressure at any point in a fluid in a closed container is tra
    7·1 answer
  • An ideal parallel-plate capacitor consists of a set of two parallel plates of area a separated by a very small distance
    7·1 answer
  • A scaffold of mass 60 kg and length 5.0 m is supported in a horizontal position by a vertical cable at each end. Its center of g
    14·1 answer
  • What do we mean by gravitational time dilation?
    5·1 answer
  • A motor does a total of 480 joules of work in 5.0 seconds to lift a 12-kilogram block to the top of a rampThe average power deve
    7·1 answer
  • Fill in the blank for the following statement: Physical weathering is the ________.
    11·2 answers
  • A 2 kg object has a specific heat capacity of 1,700 J/(kg \cdot⋅oC)
    7·1 answer
  • S When two unknown resistors are connected in series with a battery, the battery delivers total power Ps and carries a total cur
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!