This is an interesting (read tricky!) variation of Rydberg Eqn calculation.
Rydberg Eqn: 1/λ = R [1/n1^2 - 1/n2^2]
Where λ is the wavelength of the light; 1282.17 nm = 1282.17×10^-9 m
R is the Rydberg constant: R = 1.09737×10^7 m-1
n2 = 5 (emission)
Hence 1/(1282.17 ×10^-9) = 1.09737× 10^7 [1/n1^2 – 1/25^2]
Some rearranging and collecting up terms:
1 = (1282.17 ×10^-9) (1.09737× 10^7)[1/n2 -1/25]
1= 14.07[1/n^2 – 1/25]
1 =14.07/n^2 – (14.07/25)
14.07n^2 = 1 + 0.5628
n = √(14.07/1.5628) = 3
The independent variable would be the cleaning products.
The independent variable is the variable that you can manipulate. The change in the independent variable is not affected by other variables. So in this case, the independent variable would be the cleaning product because you will be changing it.
the answer is cancer is often named according to what body type it affects
The first sentence got me all psyched up to answer the question "What
horizontal force do the engines generate in order to accelerate it ?".
But the actual question, in the second sentence, turned out to be
a completely different one.
When the plane levels off and continues on at a constant altitude, it's
not accelerating up or down, so the net vertical force on it is zero.
The lift generated by the wings is exactly balancing the downward
force of gravity on the airplane.