(a) 392 N/m
Hook's law states that:
(1)
where
F is the force exerted on the spring
k is the spring constant
is the stretching/compression of the spring
In this problem:
- The force exerted on the spring is equal to the weight of the block attached to the spring:

- The stretching of the spring is

Solving eq.(1) for k, we find the spring constant:

(b) 17.5 cm
If a block of m = 3.0 kg is attached to the spring, the new force applied is

And so, the stretch of the spring is

And since the initial lenght of the spring is

The final length will be

It is based on their state like population, literacy and poverty it varies from state to state, country to country
A complex entity involving the Earth's biosphere, atmosphere, oceans, and soil; the totality constituting a feedback or cybernetic system which seeks an optimal physical and chemical environment for life on this planet
ONEEEEEEEEEEEEEEEEEEEEEEEEE
Answer:
0.3 m
Explanation:
Initially, the package has both gravitational potential energy and kinetic energy. The spring has elastic energy. After the package is brought to rest, all the energy is stored in the spring.
Initial energy = final energy
mgh + ½ mv² + ½ kx₁² = ½ kx₂²
Given:
m = 50 kg
g = 9.8 m/s²
h = 8 sin 20º m
v = 2 m/s
k = 30000 N/m
x₁ = 0.05 m
(50)(9.8)(8 sin 20) + ½ (50)(2)² + ½ (30000)(0.05)² = ½ (30000)x₂²
x₂ ≈ 0.314 m
So the spring is compressed 0.314 m from it's natural length. However, we're asked to find the additional deformation from the original 50mm.
x₂ − x₁
0.314 m − 0.05 m
0.264 m
Rounding to 1 sig-fig, the spring is compressed an additional 0.3 meters.