1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ugo [173]
3 years ago
13

A 23.9 g sample of iridium is heated to 89.7 oC, and then dropped into 20.0 g of water in a coffee-cup calorimeter. The temperat

ure of the water went from 20.1 oC to 22.6 oC. Calculate the specific heat of iridium. (specific heat of water = 4.18 J/g oC).
Physics
2 answers:
Nikolay [14]3 years ago
7 0

Answer:

The specific heat capacity of iridium = 0.130 J/g°C

Explanation:

Assuming no heat losses to the environment and to the calorimeter,

Heat lost by the iridium sample = Heat gained by water

Heat lost by the iridium sample = mC ΔT

m = mass of iridium = 23.9 g

C = specific heat capacity of the iridium = ?

ΔT = change in temperature of the iridium = 89.7 - 22.6 = 67.1°C

Heat lost by the iridium sample = (23.9)(C)(67.1) = (1603.69 C) J

Heat gained by water = mC ΔT

m = mass of water = 20.0 g

C = 4.18 J/g°C

ΔT = 22.6 - 20.1 = 2.5°C

Heat gained by water = 20 × 4.18 × 2.5 = 209 J

Heat lost by the iridium sample = Heat gained by water

1603.69C = 209

C = (209/1603.69) = 0.130 J/g°C

Nataly [62]3 years ago
3 0
<h2>Answer:</h2>

0.13J/g°C

<h2>Explanation:</h2>

The mixture of the Iridium in water is in a thermo-equilibrium since no heat is lost to the environment. i.e The heat lost (-H_{I}) by Iridium is equal to the heat gained (H_{W}) by water. This can be represented as follows;

- H_{I} = H_{W}                          --------------------------(i)

The negative sign shows that heat is lost to the environment...

<em>But;</em>

H_{I} = m_{I} C_{I} ΔT_{I}                --------------------------(ii)

Where;

m_{I} = mass of Iridium

C_{I} = specific heat capacity of Iridium

ΔT_{I} = change in temperature of Iridium = T_{I2} - T_{I1}

T_{I2} = final temperature of Iridium

T_{I1} = initial temperature of Iridium

<em>Also;</em>

H_{W} = m_{W} C_{W} ΔT_{W}            ------------------------(iii)

Where;

m_{W} = mass of water

C_{W} = specific heat capacity of water

ΔT_{W} = change in temperature of water = T_{W2} - T_{W1}

T_{W2} = final temperature of water

T_{W1} = initial temperature of water

<em>From the question;</em>

m_{I} = 23.9g

C_{I} = ?

T_{I2} = 22.6°C      [the same as the final temperature of water]

T_{I1} = 89.7°C

ΔT_{I} = 22.6°C - 89.7°C = -67.1°C

m_{W} = 20.0g

C_{W} = 4.18 J/g °C

T_{W2} = 22.6°C    

T_{W1} = 20.1°C

ΔT_{W} = 22.6°C - 20.1°C = 2.5°C

<em>Substitute the values of </em>H_{W}<em> and </em>H_{W}<em> into equation (i)</em>

- m_{I} C_{I} ΔT_{I} = m_{W} C_{W} ΔT_{W}   -------------------------------(iv)

<em>Now substitute the values of all the variables in equation(iv) into the same;</em>

- 23.9 x C_{I} x - 67.1 = 20.0 x 4.18 x 2.5

1603.69C_{I} = 209

<em>Then, solve for </em>C_{I}<em>;</em>

C_{I} = \frac{209}{1603.69}

C_{I} = 0.13

Therefore, the specific heat of Iridium is 0.13J/g°C

You might be interested in
Which of the following is true regarding the Earth's mantle?
Brilliant_brown [7]
B) It’s material moves due to convection currents.
6 0
3 years ago
What type of change accurs when a substance stays the same
Thepotemich [5.8K]
This would be a physical change because it can change back to its original form. This is like ripping paper. You can piece it back together and it still is paper.

The opposite of this is chemical change. Chemical change means the product has been changed completely like burning paper. The paper has now been turned to ash and it's impossible to change this back to its original form.
3 0
3 years ago
A tow truck exerts a net horizontal force of 1050 N on a 760-kg car. What is the acceleration of the car during this time?
vovikov84 [41]
We can solve the problem by using Newton's second law of motion:
F=ma
where
F is the net force applied to the object
m is the object's mass
a is the acceleration of the object

In this problem, the force applied to the car is F=1050 N, while the mass of the car is m=760 kg. Therefore, we can rearrange the equation and put these numbers in, in order to find the acceleration of the car:
a= \frac{F}{m}= \frac{1050 N}{760 kg}=1.4 m/s^2

The equation also tells us that the acceleration and the force have same directions: therefore, since the force exerted on the car is horizontal, the correct answer is
<span>B) 1.4 m/s2 horizontally.</span>
5 0
3 years ago
The left end of a long glass rod 8.00 cm in diameter, with an index of refraction 1.60, is ground to a concave hemispherical sur
sp2606 [1]

Answer:

a) q = -9.23 cm, b)  h’= 0.577 mm , c) image is right and virtual

Explanation:

This is an optical exercise, where the constructor equation should be used

        1 / f = 1 / p + 1 / q

Where f is the focal length, p the distance to the object and q the distance to the image

A) The cocal distance is framed with the relationship

       1 / f = (n₂-1) (1 /R₁ -1 /R₂)

In this case we have a rod whereby the first surface is flat R1 =∞ and the second surface R2 = -4 cm, the sign is for being concave

       1 / f = (1.60 -1) (1 /∞ - 1 / (-4))

       1 / f = 0.6 / 4 = 0.15

        f = 6.67 cm

We have the distance to the object p = 24.0 cm, let's calculate

       1 / q = 1 / f - 1 / p

       1 / q = 1 / 6.67 - 1/24

       1 / q = 0.15 - 0.04167 = 0.10833

       q = -9.23 cm

distance to the negative image is before the lens

B) the magnification of the lenses is given by

       M = h ’/ h = - q / p

        h’= - q / p h

        h’= - (-9.23) / 24.0 0.150

        h’= 0.05759 cm

        h’= 0.577 mm

C) the object is after the focal length, therefore, the image is right and virtual

6 0
3 years ago
A force of 100N is applied to move an object a horizontal distance of 20m to the right. The work done by this force on the objec
horsena [70]
WORKDONE = FORCE * DISPLACEMENT
W=F*S
HERE, THE FORCE = 100N AND DISTANCE = 20M
WORKDONE = 100*20
WORKDONE=2000
ITS S.I UNIT IS JOULE OR J
SO, 2000J
5 0
3 years ago
Other questions:
  • A pair of opposite electric charges of equal magnitude is called a(n)
    5·2 answers
  • Please Help!!!! I WILL GIVE BRAINLIEST!!!!!!!!!!!!!
    8·1 answer
  • Helloooooooooooo<br><br><br> A) HI<br><br> B) GO AWAY<br><br> C) BYE FELICIA<br><br> D) HELLO MATE
    13·1 answer
  • Anna will wear a black dress when she attends her cousin’s wedding. Which color(s) does the dress absorb?
    8·2 answers
  • A 0.023 kg beetle is sitting on a record player 0.15 m from the center of the record. If it takes 0.070 N of force to keep the b
    13·2 answers
  • A grasshopper jumps a horizontal distance of 1.50 m from rest, with an initial velocity at a 43.0° angle with respect to the hor
    10·2 answers
  • 1: Which person is not doing work?
    10·1 answer
  • A pulley system with a mechanical advantage of 15 is used to lift a 1750 N piano to a third floor balcony that is 7 m above the
    7·1 answer
  • Two objects of masses m1 = 0.56 kg and m2 = 0.88 kg are placed on a horizontal
    13·1 answer
  • Demarcus launches a small weight into the air. The weight takes 6.4 seconds to reach the ground again. At what time did the weig
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!