In order to describe motion along a straight line, you must state the speed and direction of the motion. Those two quantities, together, comprise what's known as "velocity".
Answer:
Amplitude = 0.058m
Frequency = 6.25Hz
Explanation:
Given
Amplitude (A) = 8.26 x 10-2 m
Frequency (f) = 4.42Hz
Conversation of energy before split
½mv² = ½KA²
Make A the subject of formula
A =
Conversation of energy after split
½(m/2)V'² = ½(m/2)V² = ½KA'²
½(m/2)V² = ½KA'²
Make A the subject of formula
First divide both sides by ½
(m/2)V² = KA'²
Divide both sides by K
V² = A'²
= A'
Substitute
for A in the above equation
A' = A/√2
A' = 8.26 x 10^-2/√2
A' = 0.05840702012600882
Amplitude after split = 0.058 (Approximated)
Frequency (f') = f√2
f' = 4.42√2
f' = 6.25082394568908011
Frequency after split = 6.25Hz (approximated)
We have: Energy(E) = Planck's constant(h) × Frequency(∨)
Here, Planck's constant(h) = 6.626 × 10⁻³⁴ J/s
Frequency (∨) = 3.16 × 10¹² /s
Substitute the values into the expression:
E = (6.626 × 10⁻³⁴)(3.16 × 10¹²) J
E = 2.093 × 10⁻²¹ Joules
In short, Your Final answer would be 2.093 × 10⁻²¹ J
Hope this helps!
Answer:
Force exerted = 25.41 kN
Explanation:
We have equation of motion
v² = u²+2as
u = 345 m/s, s = 8.9 cm = 0.089 m, v = 0 m/s
0² = 345²+2 x a x 0.089
a = -668679.78 m/s²
Force exerted = Mass x Acceleration
Mass of bullet = 38 g = 0.038 kg
Acceleration = 668679.78 m/s²
Force exerted = 25409.83 N = 25.41 kN
Answer:
The force exerted by the rope on her arms is 273.7 N = 0.274 kN
Explanation:
Step 1: Data given
Mass of the ice skater = 55.6 kg
Velocity = 1.73 m/s
She then moves in a circle of radius 0.608 m around the pole.
Step 2:
Force exterted by the horizontal rope is the centripetal force acting on theice skater:
Fc = M*ac
⇒ with ac = v²/r
Fc = M * v²/r
Fc = 55.6 * 1.73²/0.608
Fc =273.69 N
The force exerted by the rope on her arms is 273.7 N = 0.274 kN