Answer: D) The gravity on the moon is one sixth the gravity of Earth.
Explanation:
Answer:
The work done on the suitcase is, W = 1691 J
Explanation:
Given data,
The force on the suitcase is, F = 89 N
The distance Russell dragged the suitcase, S = 19 m
The work done on the suitcase by Russell is equal to the work done on the suitcase to overcome the friction
The work done on the suitcase by Russell is given by the formula
W = F · S
Substituting the given values,
W = 89 N x 19 m
W = 1691 J
Hence, the work done on the suitcase is, W = 1691 J
The nebular theory describes the formation of the solar system and states that the system began as a gigantic cloud of gas and dust called a nebula which eventually condensed to form the sun, planets and other objects in the solar system. The first fact speaks to the formation of the planets, where gravity pulled larger clumps of material closer to form solid rocky planets closer to the sun and gas giants further out. The second requirement is that a nearby explosion or super nova would have to disturb our nebula to trigger rotation and the eventual formation of the sun. The third requirement/fact is that the planets go around the sun in the same direction. the last fact is that the planets go around the sun within 6 degrees of a common plane. This indicates that the solar system formed from a spinning disk of materials.
Answer:
So coefficient of kinetic friction will be equal to 0.4081
Explanation:
We have given mass of the block m = 0.5 kg
The spring is compressed by length x = 0.2 m
Spring constant of the sprig k = 100 N/m
Blocks moves a horizontal distance of s = 1 m
Work done in stretching the spring is equal to 
This energy will be equal to kinetic energy of the block
And this kinetic energy must be equal to work done by the frictional force
So 


So coefficient of kinetic friction will be equal to 0.4081
Answer:
C. 32.7%
Explanation:
% composition = ( mass S / mass H2SO4 ) × 100 = 32.08/ 98.10 × 100 = 32.7 % pls mark brainliest