Ngan's mass on earth is 85kg.
Ngan has a weight on Mars = 14.5 N
Ngan’s weight on Earth = 833.0 N
Ngan’s mass on Earth = ?
<span>Fg,earth = mg(earth)</span>
<span>M = Fg,earth </span><span>/ g(earth)</span>
<span>M = 833.0 N / 9.8 m/s2</span>
<span>M = 85 kg</span>
Answer:
a) f ’’ = f₀
, b) Δf = 2 f₀ 
Explanation:
a) This is a Doppler effect exercise, which we must solve in two parts in the first the emitter is fixed and in the second when the sound is reflected the emitter is mobile.
Let's look for the frequency (f ’) that the mobile aorta receives, the blood is leaving the aorta or is moving towards the source
f ’= fo
This sound wave is reflected by the blood that becomes the emitter, mobile and the receiver is fixed.
f ’’ = f’
where c represents the sound velocity in stationary blood
therefore the received frequency is
f ’’ = f₀
let's simplify the expression
f ’’ = f₀ \frac{c+v}{c-v}
f ’’ = f₀
b) At the low speed limit v <c, we can expand the quantity
(1 -x)ⁿ = 1 - x + n (n-1) x² + ...
f ’’ = fo
f ’’ = fo 
leave the linear term
f ’’ = f₀ + f₀ 2
the sound difference
f ’’ -f₀ = 2f₀ v/c
Δf = 2 f₀ 
Answer:
T = 74°C
Explanation:
Given Mw = mass of water = 330g, Ma = mass of aluminium = 840g
Cw = 4.2gJ/g°C = specific heat capacity of water and Ca = 0.9J/g°C = specific heat capacity of aluminium
Initial temperature of water = 100°C.
Initial temperature of aluminium = 29°C
When the boiling water is poured into the aluminum pan, heat is exchanged and after a short time the water and aluminum pan both come to thermal equilibrium at a common temperature T.
Heat lost by water equal to the heat gained by aluminium pan.
Mw × Cw×(100 –T) = Ma × Ca × (T–29)
330×4.2×(100– T) = 890×0.9×(T–29)
1386(100 – T) = 801(T –29)
1386/801(100 – T) = T – 29
1.73(100 – T) = T – 29
173 –1.73T = T –29
173+29 = T + 1.73T
202 = 2.73T
T = 202/2.73
T = 74°C