No, this is false.
In principle, every well can run dry, and this includes a well that has reached the water table. If the water is taken from the well faster than it's replenishing itself, the well will run dry- and in this situation, typically people need to look for a new place to have a well.
With arms outstretched,
Moment of inertia is I = 5.0 kg-m².
Rotational speed is ω = (3 rev/s)*(2π rad/rev) = 6π rad/s
The torque required is
T = Iω = (5.0 kg-m²)*(6π rad/s) = 30π
Assume that the same torque drives the rotational motion at a moment of inertia of 2.0 kg-m².
If u = new rotational speed (rad/s), then
T = 2u = 30π
u = 15π rad/s
= (15π rad/s)*(1 rev/2π rad)
= 7.5 rev/s
Answer: 7.5 revolutions per second.
Answer:
A, the angle of refraction
The normal force of the force given is calculated through the equation,
Fn = F(sin θ)
where Fn is the normal force, F is the force, and θ is the angle.
Fn = (25 N)(sin 60°) = 21.65 N
The x-component of the force applied is,
Fx = (25 N)(cos 60°) = 12.5 N
The value of the coefficient of static friction is calculated through the equation,
F = μFn
μ = Fx / Fn = 12.5 N / 21.65 N = 0.577
Explanation:
It is given that,
Radius of the circular orbit,
Speed of the electron, 
Mass of the electron, 
(a) The force acting on the electron is centripetal force. Its formula is given by :


(b) The centripetal acceleration of the electron is given by :



Hence, this is the required solution.