Answer:
Shape of the object
Explanation:
This depends on the shape of the object. For a spherical object, a unitless value of 0.47 is typical. The magnitude of the velocity squared. The faster you go, the greater the air resistance force
Answer:
The element "AI" has:
Protons: 13 Neutrons: 14 Electrons: 13
Have a great day.
Answer:
There is a loss of fluid in the container of 0.475L
Explanation:
To solve the problem it is necessary to take into account the concepts related to the change of voumen in a substance depending on the temperature.
The formula that describes this thermal expansion process is given by:

Where,
Change in volume
Initial Volume
Change in temperature
coefficient of volume expansion (Coefficient of copper and of the liquid for this case)
There are two types of materials in the container, liquid and copper, so we have to change the amount of Total Volume that would be subject to,

Where,
= Change in the volume of liquid
= Change in the volume of copper
Then replacing with the previous equation we have:


Our values are given as,
Thermal expansion coefficient for copper and the liquid to 20°C is




Replacing we have that,



Therefore there is a loss of fluid in the container of 0.475L
Answer:

Explanation:
a. Internal energy and the relative specific volume at
are determined from A-17:
.
The relative specific volume at
is calculated from the compression ratio:

#from this, the temperature and enthalpy at state 2,
can be determined using interpolations
and
. The specific volume at
can then be determined as:

Specific volume,
:

The pressures at
is:

.The thermal efficiency=> maximum temperature at
can be obtained from the expansion work at constant pressure during 

b.Relative SV and enthalpy at
are obtained for the given temperature with interpolation with data from A-17 :
Relative SV at
is

=
Thermal efficiency occurs when the heat loss is equal to the internal energy decrease and heat gain equal to enthalpy increase;

Hence, the thermal efficiency is 0.563
c. The mean relative pressure is calculated from its standard definition:

Hence, the mean effective relative pressure is 674.95kPa
The absolute pressure is given by the equation,

Here,
is absolute pressure,
is atmospheric pressure and
is vacuum pressure.
Therefore,

The gage pressure is given by the equation,
.
Thus,
.
In kn/m^2,
The absolute pressure,

The gage pressure,
.
In lbf/in2
The absolute pressure,

The gage pressure,

In psi,
The absolute pressure,
.
The gage pressure,

In mm Hg
The absolute pressure,

The gage pressure,
