1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alona [7]
3 years ago
5

Based on the law of conservation of energy, how can we reasonably improve a machine’s ability to do work?

Physics
2 answers:
bagirrra123 [75]3 years ago
5 0
Reduce friction because friction just makes things harder
denis-greek [22]3 years ago
3 0

C. Reduce the friction between its moving parts.

You might be interested in
Which of these is not a part of the<br> cardiovascular system?
lilavasa [31]

Answer:I don't see any

Explanation:

6 0
3 years ago
Read 2 more answers
Scenario
Anvisha [2.4K]

Answer:

1) t = 23.26 s,  x = 8527 m, 2)   t = 97.145 s,  v₀ = 6.4 m / s

Explanation:

1) First Scenario.

After reading your extensive problem, we are going to solve it, for this exercise we must use the parabolic motion relationships. Let's carry out an analysis of the situation, for deliveries the planes fly horizontally and we assume that the wind speed is zero or very small.

Before starting, let's reduce the magnitudes to the SI system

         v₀ = 250 miles/h (5280 ft / 1 mile) (1h / 3600s) = 366.67 ft/s

         y = 2650 m

Let's start by looking for the time it takes for the load to reach the ground.

         y = y₀ + v_{oy} t - ½ g t²

in this case when it reaches the ground its height is zero and as the plane flies horizontally the vertical speed is zero

         0 = y₀ + 0 - ½ g t2

          t = \sqrt{ \frac{2y_o}{g} }

          t = √(2 2650/9.8)

          t = 23.26 s

this is the horizontal scrolling time

          x = v₀ t

          x = 366.67  23.26

          x = 8527 m

the speed at the point of arrival is

         v_y = v_{oy} - g t = 0 - gt

         v_y = - 9.8 23.26

         v_y = -227.95 m / s

Module and angle form

        v = \sqrt{v_x^2 + v_y^2}

         v = √(366.67² + 227.95²)

        v = 431.75 m / s

         θ = tan⁻¹ (v_y / vₓ)

         θ = tan⁻¹ (227.95 / 366.67)

         θ = - 31.97º

measured clockwise from x axis

We see that there must be a mechanism to reduce this speed and the merchandise is not damaged.

2) second scenario. A catapult located at the position x₀ = -400m y₀ = -50m with a launch angle of θ = 50º

we look for the components of speed

           cos θ = v₀ₓ / v₀

           sin θ = v_{oy} / v₀

            v₀ₓ = v₀ cos θ

            v_{oy} = v₀ sin θ

we look for the time for the arrival point that has coordinates x = 0, y = 0

            y = y₀ + v_{oy} t - ½ g t²

            0 = y₀ + vo sin θ t - ½ g t²

            0 = -50 + vo sin 50 t - ½ 9.8 t²

            x = x₀ + v₀ₓ t

            0 = x₀ + vo cos θ t

            0 = -400 + vo cos 50 t

podemos ver que tenemos un sistema de dos ecuación con dos incógnitas

          50 = 0,766 vo t – 4,9 t²

          400 =   0,643 vo t

resolved

          50 = 0,766 ( \frac{400}{0.643 \ t}) t – 4,9 t²

          50 = 476,52 t – 4,9 t²

          t² – 97,25 t + 10,2 = 0

we solve the quadratic equation

         t = [97.25 ± \sqrt{97.25^2 - 4 \ 10.2}] / 2

         t = 97.25 ±97.04] 2

         t₁ = 97.145 s

         t₂ = 0.1 s≈0

the correct time is t1 the other time is the time to the launch point,

         t = 97.145 s

let's find the initial velocity

         x = x₀ + v₀ cos 50 t

         0 = -400 + v₀ cos 50 97.145

         v₀ = 400 / 62.44

         v₀ = 6.4 m / s

5 0
3 years ago
The distance recorded for riding a motorcycle on its rear wheel without stopping is more than 320 km! Suppose the rider in this
antiseptic1488 [7]

Answer:

<h3>14.97m/s</h3>

Explanation:

Given

Initial velocity of the car u = 8m/s

Distance travelled by the rider S = 40m

Acceleration a = 2m/s²

Required

rider's velocity after the acceleration v

Using the equation of motion

v² = u²+2as

v² = 8²+2(2)(40)

v² = 64+160

v² = 224

v = √224

v = 14.97m/s

Hence the rider's velocity after the acceleration is 14.97m/s

5 0
3 years ago
A football player kicks the ball at a 45 degree angle. Without an effect from the wind, the ball would travel 60.0m horizontally
Ronch [10]
B when the ball is at its maxium height 
5 0
3 years ago
A mother pushes a baby stroller 10 meters by applying 40 newtons of force. how much work was done?
topjm [15]
Based on the situation above the the work done was 400 Joules. <span>Q = FS cos(theta) is the so-called work function. It's important to learn the work physics; you'll see it over and over in science/physics class. Theta is the angle between the force vector F and the distance vector S. In your problem we assume theta = 0, the two vectors were assumed aligned.</span>
7 0
3 years ago
Read 2 more answers
Other questions:
  • (Select all that apply)
    7·2 answers
  • The windshield of a car has a total length of arm and blade of 9 ​inches, and rotates back and forth through an angle of 93degre
    6·2 answers
  • PLEASE HELP When astronauts eliminate waste in space, which is likely to be used?  [A] showers and faucets, spraying hot water..
    12·1 answer
  • What is the formula for moment in physics
    12·2 answers
  • DVDs and Blu-ray disks store information in patterns that are read by laser light. The shorter the wavelength of the light, the
    5·2 answers
  • QUESTION 10
    11·1 answer
  • Explain why a sound becomes louder as you move closer to the source of the sound.​
    10·1 answer
  • A 100 kg cart on a roller coaster has 1800J of kinetic energy. How fast is it going?<br> KE= 1/2mv2
    5·1 answer
  • Two formats of sources are
    11·1 answer
  • I need help ASAP please :)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!