The period of the block's mass is changed by a factor of √2 when the mass of the block was doubled.
The time period T of the block with mass M attached to a spring of spring constant K is given by,
T = 2π(√M/K).
Let us say that, when we increased the mass to 2M, the time periods of the block became T', the spring constant is not changed, so, we can write,
T' = 2π(√2M/K)
Putting T = 2π(√M/K) above,
T' =√2T
So, here we can see, if the mass is doubled from it's initial value. The time period of the mass will be changed by a factor of √2.
To know more about time period of mass, visit,
brainly.com/question/20629494
#SPJ4
I believe I seen on google if you go to Mather
Answer:
A feature and a coin dropped from the same height falls at the same speed at the condition at free fall,both coin and feature gain same acceleration of 9.8m/s^2.