<span>3933 watts
At 100 C (boiling point of water), it's density is 0.9584 g/cm^3. The volume of water lost is pi * 12.5^2 * 10 = 4908.738521 cm^3
The mass of water boiled off is 4908.738521 * 0.9584 = 4704.534999 grams.
Rounding to 4 significant figures gives me 4705 grams of water.
The heat of vaporization for water is 2257 J/g. So the total energy applied is
2257 J/g * 4705 g = 10619185 J
Now we need to divide that by how many seconds we've spent boiling water. That would be 45 * 60 = 2700 seconds.
Finally, the rate of heat transfer in Joules per second will be the total number of joules divided by the total number of seconds. So
10619185 J / 2700 s = 3933 J/s = 3933 (kg m^2/s^2)/s = 3933 (kg m^2/s^3)
= 3933 watts</span>

Hi Pupil Here's Your answer :::
➡➡➡➡➡➡➡➡➡➡➡➡➡
An object moving with constant speed can be accelerated if direction of motion changes. For example, an object moving with a constant speed in a circular path has an acceleration because its direction of motion changes continuously.
⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅⬅
Hope this Helps . . . . . . . . .
We know that
g = LcosΘ
<span>where g, L and Θ are centripetal gravity length, and angle of object
</span><span>ω² = g/LcosΘ </span>
<span>ω = √(g / LcosΘ) </span>
Answer:
about 229 feet.
Explanation:
According to my research on the information provided by the drivers educational book, It is said that a motor vehicle with good brakes that is going at 50 miles per hour can be stopped within about 229 feet. This is dependent 100% on having good brakes as well as there being normal driving conditions (on pavement with no rain or other weather that may affect driving conditions).
I hope this answered your question. If you have any more questions feel free to ask away at Brainly.