Answer:
1.) answer B
2.) answer D
3.) answer A
Explanation:
In all of these problems, it is essential to draw pictures in order to understand which trigonometric function to use according to the angle that the vector in question forms with the component requested. For all of them try to picture a right angle triangle with the vector as the hypotenuse, and the components as the triangle's shorter sides. Please refer to the three pictures attached as image for this answer a,d notice that the vector quantity known for all cases is represented in red, and the component to find is represented in green.
Problem 1) : the vector velocity makes an angle of 24 degrees with the edge of the table. So picture that vector as the hypotenuse of a right angle triangle for which you know the value: 1.8 m/s
So in this case, where you know the angle, the hypotenuse, and need to find the adjacent side to the angle, you use the cosine function as follows:
requested component 
which we round to 1.6 to match answer C).
For problem 2.) wee need to find the component opposite to the given angle in the triangle for which we also know the hypotenuse. So we use the sine function as follows:
requested component 
which we round to 135.9 m to match answer D).
For problem 3.) we need to find the horizontal component to the acceleration which corresponds to the adjacent side to the known angle, so we use the cosine function as follows:
requested component 
which we round tp 7.7 to match answer A).
Answer:
A. The object falls a distance of 250 m
Explanation:
Hi there!
In the question, you have forgotten the acceleration due to gravity. However, looking on the web I´ve found a very similar problem in which the acceleration due to gravity was as twice as much as it is on Earth.
The equation of height of a falling object is the following:
y = y0 + v0 · t + 1/2 · g · t²
Where:
y = height of the object after a time t.
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (on Earth: ≅ -10 m/s² considering the upward direction as positive).
Let´s place the origin of the system of reference at the point where the object is released so that y0 = 0. Since the object falls from rest, v0 = 0.
Then, the height of the object after 5 s will be :
y = 1/2 · 2 · g · t² (notice that the acceleration due to gravity is 2 · g)
y = g · t²
y = -10 m/s² · (5 s)²
y = -250 m
The object falls a distance of 250 m.
Acceleration is defined as the rate of change for velocity. If the object is accelerating it is changing its velocity.
Answer:
Human senses include the ability to detect electromagnetic waves in the 3800-7600 angstrom range, air waves of 15 to 20,000 beats per second, air-borne and liquid-borne molecules of proper size, quantity and configuration, and to generate nerve impulses triggered by objects impinging on body surfaces with enough force
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa