10°c
Explanation:
Given parameter;
Lower fixed point = 30mm
Upper fixed point = 180mm
Reading = 45mm
Unknown:
The degree celcuis temperature at 45mm = ?
Solution:
To solve this problem we simply compare the mm- scale to the celcius - scale that we know.
The upper fixed point is the boiling point of water
Lower fixed point is the freezing point of water
This shows that both the upper and lower fixed point of both thermometers are the same;
mm-scale °c scale
180mm 100°c
45mm x
30mm 0°c
Solving;

x (150) = 100 x 15
x = 10°c
learn more:
Temperature scales brainly.com/question/1603430
#learnwithBrainly
Answer:

Explanation:
Take sum of torques at the point the step touches the wheel, that eliminates two torques
Σ
Since we are looking for when the wheel just starts to rise up N-> 0 so no torque due to normal force

The perpendicular lever arm for the F force is R-h

And the T of gravity according to the image

Σ





<h2>Emerging Technologies that will make Hydroelectric Energy Source Safer</h2>
The variation in technology to labor lower loads and higher peaks make the hydroelectric energy source safer, more usable, more efficient and cleaner. The plants can also adapt speed drives changing the capability to suffice various sorts of demands which includes great speed response. Such variation can alter the income rate by 85%. The spread of operating range of the plant can increase income rate by 61%.
when the ball hits the floor and bounces back the momentum of the ball changes.
the rate of change of momentum is the force exerted by the floor on it.
the equation for the force exerted is
f = rate of change of momentum

v is the final velocity which is - 3.85 m/s
u is initial velocity - 4.23 m/s
m = 0.622 kg
time is the impact time of the ball in contact with the floor - 0.0266 s
substituting the values

since the ball is going down, we take that as negative and ball going upwards as positive.
f = 189 N
the force exerted from the floor is 189 N
Answer: A) highly mobile electrons in the valence shell
Explanation: conductivity in metals is a result of the movement of electrically charged particles—the electrons. These free electrons also known as valence electrons are free to move, and as a result they can travel through the lattice that forms the physical structure of a metal. The presence of valence electrons determines a metal's conductivity. However, several other factors can affect the conductivity of a metal such as impurities, temperature, magnetic fields etc.