Answer:
2.956 moles chlorine gas will be produced
Explanation:
Step 1: data given
Number of moles carbon tetrachloride (CCl4) = 0.739 moles
carbon disulfide (s) = CS2(s)
chlorine (g) = Cl2(g)
carbon tetrachloride (l) = CCl4(l)
sulfur dichloride (s) = SCl2 (s)
Step 2: The balanced equation
CS2(s) + 4Cl2(g) → CCl4(l) +2SCl2
Step 3: Calculate moles chlorine gas
For 1 moles Cs2 we need 4 moles Cl2 to produce 1 mol CCl4 and 2 moles SCl2
For 0.739 moles CCl4 we need 4*0.739 = 2.956 moles Cl2
2.956 moles of chlorine gas will be produced
To get the molarity you need to follow this equation
moles of solute
Molarity (M = -----------------------
Liters of solution
But before you apply that equation you need to find the moles of solute and the liters of solution. Follow this equation
Na2SO4 + BaCl2 = BaSO4 + 2 NaCl
Solution
Moles of BaSO4 = 5.28 g
---------------
233.43 g / mol
= 0.0226 moles
Moles of NaSO4 = 0.0226
0.0226 mole
Molarity = -----------------
0.250 L
= 0.0905 mol / L
So the answer is 0.0905 mol / L
Explanation:
Typically, only one element is present, so all atomic radii are the same. -Metallic bonding is not directional. -Nearest neighbor distances tend to be small in order to lower bond energy.
Answer:
Mole fraction of
= 0.58
Mole fraction of
= 0.42
Explanation:
Let the mass of
and
= x g
Molar mass of
= 33.035 g/mol
The formula for the calculation of moles is shown below:
Thus,
Molar mass of
= 46.07 g/mol
Thus,
So, according to definition of mole fraction:

Mole fraction of
= 1 - 0.58 = 0.42
Answer:
Explanation: A square of dry ice has a surface temperature of - 109.3 degrees Fahrenheit (- 78.5 degrees C). Dry ice additionally has the extremely decent component of sublimation - as it separates, it transforms legitimately into carbon dioxide gas as opposed to a fluid.