Answer:
1.27 × 10⁵ L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 745 Torr
- Initial volume (V₁): 1.41 × 10⁴ L
- Inital temperature (T₁): 21 °C
- Final pressure (P₂): 63.1 Torr
- Final temperature (T₂): -48 °C
Step 2: Convert the temperatures to the Kelvin scale
We will use the following expression.
K = °C + 273.15
K = 21 °C + 273.15 = 294 K
K = -48 °C + 273.15 = 225 K
Step 3: Calculate the final volume of the balloon
We will use the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
V₂ = P₁ × V₁ × T₂/ T₁ × P₂
V₂ = 745 Torr × 1.41 × 10⁴ L × 225 K/ 294 K × 63.1 Torr
V₂ = 1.27 × 10⁵ L
It has to be dilute since the crystal dissolved and unsaturated for the same reason so B
Answer:
2 E16 Hz or 2 * 10^16 Hz
Explanation:
The formula to determine frequency is f = c / λ.
f = frequency
c = speed of light
λ = wavelength
f = 3E8 / 1.5E-8
f = 2E16
This makes sense because UV light exists roughly
between 8E14 Hz and 3E16 Hz ----- 2E16 Hz falls in that range
Explanation:
The more reactive element replaces less reactive element during chemical reaction.
Since, potassium is more reactive than beryllium. When potassium reacts with beryllium choride, it replaces beryllium and forms potassium chloride and produces beryllium.
Answer:
divide the distance by the average
Explanation:
ash QC ok