The theoretical proportion is given by the balanced chemical equation:
2 mol NBr / 3 mol Na OH
Then x mol NaOH / 40 mol NBr3 = 3mol NaOH/2 mol NBr3
Solve for x, x = 40 * 3/2 = 60 mol NaOH.
Given that there are 48 mol NaOH (less than 60) this is the limitant reactant and the other is the excess reactant.
Answer: NBr3..
Answer:
Chlorophyll
Explanation:
Photosynthesis is the process through which plant cells use carbon dioxide & water to create oxygen & energy rich organic compounds. They do so by converting sunlight ie light energy into chemical energy. This is possible due to presence of chlorophyll in them. Animals can't do so, as they dont have chlorophyll.
Answer:
The density of ozone is 4.24.
Explanation:
The relation between the relative rate of diffusion and density is given by :

The given ratio of the relative rate of diffusion of ozone as compared to chlorine is 6:3.
Let the density of ozone is d₂.

So, the density of ozone is 4.24.
Answer:
involuntary, attached to the eyeball, nonstriated.
Explanation:
The given question is incomplete. The complete question is as follows.
Which of the following best helps explain why an increase in temperature increases the rate of a chemical reaction?
(a) at higher temperatures, high-energy collisions happen less frequently.
(b) at low temperatures, low-energy collisions happen more frequently.
(c) at higher temperatures, less-energy collisions happen less frequently.
(d) at higher temperatures, high-energy collisions happen more frequently
Explanation:
When we increase the temperature of a chemical reaction then molecules of the reactant species tend to gain kinetic energy. As a result, they come into motion which leads to more number of collisions within the molecules.
Therefore, chemical reaction will take less amount of time in order to reach its end point. This means that there will occur an increase in rate of reaction.
Thus, we can conclude that the statement at higher temperatures, high-energy collisions happen more frequently, best explains why an increase in temperature increases the rate of a chemical reaction.