Put it in a beaker. Use a smaller beaker filled half way with ice and water and place in the larger one. It should be about an inch or two above the mixture. Heat over a Bunsen burner and the naphthalene will deposit on the bottom of smaller beaker.
And in this way, nephthalene be separated from the mixture of KBR and sand.
Answer:
He was the first scientist to observe and describe bacteria and protozoa by looking at a drop of water from a pound under a microscope. He also was the one to build the first compound microscope.
Hope this helps :)
Answer:
Approximately
.
Explanation:
Make use of the molar mass data (
) to calculate the number of moles of molecules in that
of
:
.
Make sure that the equation for this reaction is balanced.
Coefficient of
in this equation:
.
Coefficient of
in this equation:
.
In other words, for every two moles of
that this reaction consumes, two moles of
would be produced.
Equivalently, for every mole of
that this reaction consumes, one mole of
would be produced.
Hence the ratio:
.
Apply this ratio to find the number of moles of
that this reaction would have produced:
.
Answer:
Death rates, Birth rates, and immigration rates
Explanation:
A3B2
bond is ionic
A is in group 2 (you can pick any like Ca)
B is in group 5 (like B)
the other question:
the reason is they are neutral gas and they already have 8 electrons except for He which is 2 and are completely stable so don't want to loose any electron vs Li and Na which have only 1 electron in the outer layer and are willing to loose that one to become stable.