Answer:
Moles to Grams caco3
1 mole is equal to 1 moles CaCO3, or 100.0869 grams.
Answer:

Explanation:
k stand for equilibrium constants in terms of reaction
The higher the value of an equilibrium constant the faster the equilibrium reaction comes to completion.
Consider the example below:
⇄
where

For a faster reaction the numerator i.e. the right hand side of the equation have to be higher than the left hand side (the denominator). therefore the higher the numerator, the higher the value of the equilibrium constant and the faster the reaction get to completion thus option c is correct.
Answer:
K = Ka/Kb
Explanation:
P(s) + (3/2) Cl₂(g) <-------> PCl₃(g) K = ?
P(s) + (5/2) Cl₂(g) <--------> PCl₅(g) Ka
PCl₃(g) + Cl₂(g) <---------> PCl₅(g) Kb
K = [PCl₃]/ ([P] [Cl₂]⁽³'²⁾)
Ka = [PCl₅]/ ([P] [Cl₂]⁽⁵'²⁾)
Kb = [PCl₅]/ ([PCl₃] [Cl₂])
Since [PCl₅] = [PCl₅]
From the Ka equation,
[PCl₅] = Ka ([P] [Cl₂]⁽⁵'²⁾)
From the Kb equation
[PCl₅] = Kb ([PCl₃] [Cl₂])
Equating them
Ka ([P] [Cl₂]⁽⁵'²⁾) = Kb ([PCl₃] [Cl₂])
(Ka/Kb) = ([PCl₃] [Cl₂]) / ([P] [Cl₂]⁽⁵'²⁾)
(Ka/Kb) = [PCl₃] / ([P] [Cl₂]⁽³'²⁾)
Comparing this with the equation for the overall equilibrium constant
K = Ka/Kb
Answer:
the answer is atoms and molecules
Answer: lone pair of electrons
Explanation: A bonding electron domain is a pair of electrons shared between two atoms and a nonbonding is a lone pair of electrons