Answer:
The boiling point decreases as the volume decreases.
Explanation:
The Temperature - Volume law otherwise called as Charles law is applied, which says that the volume of the given gas at constant pressure is directly proportional to the temperature measured in Kelvin. As the volume increases, the temperature also increases, if the volume decreases, then the temperature also decreases.
As per the Charles law, here the volume is decreased from 50 ml to 25 ml so the boiling point also decreases.
A molecule that can h-bond will not always necessarily and does not have guarantee to have a higher boiling point than one than cannot have h-bond.
we can take an example of Pentan-2-one that cannot h-bond but instead of this it has a high boiling point that is 102.3 °C, while propan-1-ol can h-bond but it has a boiling point of 97.2°C, that is lower than the boiling point of Pentan-2-one.
The correct answer is option 2. A 0.8 M aqueous solution of NaCl has a higher boiling point and a lower freezing point than a 0.1 M aqueous solution of NaCl. This is explained by the colligative properties of solutions. For the two properties mentioned, the equation for the calculation of the depression and the elevation is expressed as: ΔT = -Km and <span>ΔT = Km, respectively. As we can see, concentration and the change in the property has a direct relationship.</span>