Answer:
(D) 3
Explanation:
The angular momentum is given by:

Thus, the magnitude of the angular momenta of both solar systems are given by:

where we have taken that both systems has the same radius.
By taking into account that T1=3T2, we have

but L1=L2=L:

Hence, the answer is (D) 3
HOPE THIS HELPS!!
What did the protoplanets become?
a. nebulae
b. planets
c. solar nebulae
d. planetesimals
The protoplanets
become nebulae. The answer is letter A. The
rest of the choices do not answer the question above.
Answer:
a) T = 608.22 N
b) T = 608.22 N
c) T = 682.62 N
d) T = 533.82 N
Explanation:
Given that the mass of gymnast is m = 62.0 kg
Acceleration due to gravity is g = 9.81 m/s²
Thus; The weight of the gymnast is acting downwards and tension in the string acting upwards.
So;
To calculate the tension T in the rope if the gymnast hangs motionless on the rope; we have;
T = mg
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs the rope at a constant rate tension in the string is
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs up the rope with an upward acceleration of magnitude
a = 1.2 m/s²
the tension in the string is T - mg = ma (Since acceleration a is upwards)
T = ma + mg
= m (a + g )
= (62.0 kg)(9.81 m/s² + 1.2 m/s²)
= (62.0 kg) (11.01 m/s²)
= 682.62 N
When the gymnast climbs up the rope with an downward acceleration of magnitude
a = 1.2 m/s² the tension in the string is mg - T = ma (Since acceleration a is downwards)
T = mg - ma
= m (g - a )
= (62.0 kg)(9.81 m/s² - 1.2 m/s²)
= (62.0 kg)(8.61 m/s²)
= 533.82 N
Answer:
B. 17.15 watts
Explanation:
Given that
Time = 10 seconds
height = distance = 0.7 meters
weight of sack = mg = F = 245 newtons
Power = work done/ time taken
Where work done = force × distance
Substituting the given parameters into the formula
Work done = 245 newton × 0.7 meters
Work done = 171.5 J
Recall,
Power = work done/time
Power = 171.5 J ÷ 10
Power = 17.15 watts
Hence the power expended is B. 17.15 watts
Answer:
a. A = 0.1656 m
b. % E = 1.219
Explanation:
Given
mB = 4.0 kg , mb = 50.0 g = 0.05 kg , u₁ = 150 m/s , k = 500 N / m
a.
To find the amplitude of the resulting SHM using conserver energy
ΔKe + ΔUg + ΔUs = 0
¹/₂ * m * v² - ¹/₂ * k * A² = 0
A = √ mB * vₓ² / k
vₓ = mb * u₁ / mb + mB
vₓ = 0.05 kg * 150 m / s / [0.050 + 4.0 ] kg = 1.8518
A = √ 4.0 kg * (1.852 m/s)² / (500 N / m)
A = 0.1656 m
b.
The percentage of kinetic energy
%E = Es / Ek
Es = ¹/₂ * k * A² = 500 N / m * 0.1656²m = 13.72 N*0.5
Ek = ¹/₂ * mb * v² = 0.05 kg * 150² m/s = 1125 N
% E = 13.72 / 1125 = 0.01219 *100
% E = 1.219