Answer and Explanation
Arranging the measured values in increasing order;
4.3s, 4.6s, 4.6s, 4.8s, 5.1s, 5.8s
The two outliers are obviously 4.3s and 5.8s; An outlier is a value in a statistical sample which does not fit a pattern that describes most other data point. Outliers make the average value complicated. So, it is usually better for data to be precise with data points spreading out around a small area.
So, the mean is the average of the four remaining data points after removing the outliers.
Mean = (4.6 + 4.6 + 4.8 + 5.1)/4
Mean = 4.775s
So, the value recorded should be 4.775s, 4.78s or 4.8s depending on the number of decimal places allowed.
QED!
Answer:
time of collision is
t = 0.395 s

so they will collide at height of 5.63 m from ground
Explanation:
initial speed of the ball when it is dropped down is

similarly initial speed of the object which is projected by spring is given as

now relative velocity of object with respect to ball

now since we know that both are moving under gravity so their relative acceleration is ZERO and the relative distance between them is 6.4 m



Now the height attained by the object in the same time is given as



so they will collide at height of 5.63 m from ground
66666666666666666666666666666666666666666666666666666666666666666666666666666666666666
Use the density formula:
Mass of the substance
————————————
Volume of the substance
This gives you the density.
Corn syrup has a density of about 1.4 grams per cubic centimeter, and has the highest density of all liquids!
Hope this helps!
Answer:
Juno scientific payload includes:
- A gravity/radio science system (Gravity Science)
- A six-wavelength microwave radiometer for atmospheric sounding and composition (MWR)
- A vector magnetometer (MAG)
- Plasma and energetic particle detectors (JADE and JEDI)
- A radio/plasma wave experiment (Waves)
- An ultraviolet imager/spectrometer (UVS)
- An infrared imager/spectrometer (JIRAM)
Explanation:
Each mission of NASA has a specific set of instruments that it uses to perform scientific experiments on the desired heavenly body. In case of Juno, the mission for Jupiter has a series of instruments that would study domains of gravitational forces, magnetic effect, particle detection, radiation detection, UV/IR imaging, and plasma experiments.