Complete Question
A flat loop of wire consisting of a single turn of cross-sectional area 8.00 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 1.60 T in 0.99 s. What is the resulting induced current if the loop has a resistance of 
Answer:
The current is
Explanation:
From the question we are told that
The area is
The initial magnetic field at
is 
The magnetic field at
is 
The resistance is 
Generally the induced emf is mathematically represented as

=> 
=> 
Generally the current induced is mathematically represented as

=>
=>
Answer:
Final volumen first process 
Final Pressure second process 
Explanation:
Using the Ideal Gases Law yoy have for pressure:

where:
P is the pressure, in Pa
n is the nuber of moles of gas
R is the universal gas constant: 8,314 J/mol K
T is the temperature in Kelvin
V is the volumen in cubic meters
Given that the amount of material is constant in the process:

In an isobaric process the pressure is constant so:



Replacing : 

Replacing on the ideal gases formula the pressure at this piont is:

For Temperature the ideal gases formula is:

For the second process you have that
So:




Answer:
a) v, v
b) 2mv^2
c) Elastic collion
Explanation:
(a) The velocity of the second particle after the collision is (v2x,v2y)=(v,−v). From momentum conservation in x-direction
Here x, y represent direction.They are not variable. 1 and 2 represent before and after.
2vm=v1xm+v2xm, we find v1x=v.
From momentum conservation in y-direction
0 =v1ym+v2ym, we findv1y=v.
(b) By energy conservation principle
Before: K=1/2m(2v)^2=2mv^2.
After: K=1/2m(v^2(1x)+v^2(1y))+12m(v22x+v22y)=2mv^2
(c) The collision is elastic
Answer: 
Explanation:
Given
Distance putty has to travel is 3.5 m
The initial speed of putty is 9.50 m/s
Using equation of motion to determine the velocity of putty just before it hits ceiling


So, the velocity of putty just before hitting is 