Answer:

Explanation:
We just have to calculate what angular displacement a ball with an average angular velocity of 290 rev/min experiments in 0.64s. By definition, angular velocity
is the angular displacement
divided by the time elapsed:

Since
and
, we can covert:

Where the terms between parenthesis are equal to 1, so they just change the units. Then for our values we have:

He's accelerating at 3 m/s² . That means his speed is increasing by 3 m/s every second.At the end of 8 seconds, his speed is (8 x 3 m/s) = 24 m/s .He's been moving south for the whole 8 seconds.So at the end of that time, his velocity is 24 m/s south .
Displacement/distance metres
Time seconds
Force Newtons
Energy Joules
Voltage Volts
Current intensity Amperes
Resistance Ohms
Light intensity Candella
Pressure Pascals
Charge Coulombs
That statement is true
Retinal disparity : space between your eyes that allow binocular vision to create depth perception
Retinal Convergence : Space between your eyes that signal visual moves to the retina
They both will increases as an object get closer to the individual, allowing them acknowledge and observe the existence of the object
Answer:
the ratio of Hank's mass to Harry's mass is 0.7937 or [ 0.7937 : 1
Explanation:
Given the data in the question;
Hank and Harry are two ice skaters, since both are on top of ice, we assume that friction is negligible.
We know that from Newton's Second Law;
Force = mass × Acceleration
F = ma
Since they hold on to opposite ends of the same rope. They have the same magnitude of force |F|, which is the same as the tension in the rope.
Now,
Mass
× Acceleration
= Mass
× Acceleration
so
Mass
/ Mass
= Acceleration
/ Acceleration
given that; magnitude of Hank's acceleration is 1.26 times greater than the magnitude of Harry's acceleration,
Mass
/ Mass
= 1 / 1.26
Mass
/ Mass
= 0.7937 or [ 0.7937 : 1 ]
Therefore, the ratio of Hank's mass to Harry's mass is 0.7937 or [ 0.7937 : 1 ]