Answer : D

The denominators are same
So we combine the numerators

To remove parenthesis we distribute negative sign inside the second parenthesis



Morgan made a mistake. He forgot to distribute the negative sign
Morgan forgot to distribute the negative sign to two of the terms 2t and 2 inside second parenthesis
Let

where we assume |r| < 1. Multiplying on both sides by r gives

and subtracting this from
gives

As n → ∞, the exponential term will converge to 0, and the partial sums
will converge to

Now, we're given


We must have |r| < 1 since both sums converge, so


Solving for r by substitution, we have


Recalling the difference of squares identity, we have

We've already confirmed r ≠ 1, so we can simplify this to

It follows that

and so the sum we want is

which doesn't appear to be either of the given answer choices. Are you sure there isn't a typo somewhere?
Hey there! :)
To find an equation of a line that passes through (5, 1) and has a slope of 2, we'll need to plug our known variables into the slope-intercept equation.
Slope-intercept equation : y = mx + b ; where m=slope, b=y-intercept
Since we're already given the slope, all we really need to do is find the y-intercept.
We can do this by plugging our known values into the slope-intercept equation.
y = mx + b
Since we're trying to find "b," we need to plug in "y, m, x" into our formula.
(1) = (2)(5) + b
Simplify.
1 = 10 + b
Subtract 10 from both sides.
1 - 10 = b
Simplify.
-9 = b
So, our y-intercept is 9!
Now, we can very simply plug our known values into slope-intercept form.
y = mx + b
y = 2x - 9 → final answer
~Hope I helped!~
Answer:
First let's define what modular arithmetic is, what would come is an arithmetic system for equivalence classes of whole numbers called congruence classes.
Now, the modular division is the division in modular arithmetic.
Answering the question, a modular division problem like ordinary arithmetic is not used, division by 0 is undefined. For example, 6/0 is not allowed. In modular arithmetic, not only 6/0 is not allowed, but 6/12 under module 6 is also not allowed. The reason is that 12 is congruent with 0 when the module is 6.