Answer:
The average acceleration during the 6.0 s interval was -27 m/s².
Explanation:
Hi there!
The average acceleration is defined as the change in velocity over time:
a = Δv/t
Where:
a = acceleration.
Δv = change in velocity = final velocity - initial velocity
t = elapsed time
The change in velocity will be:
Δv = final velocity - initial velocity
Δv = -74 m/s - 87 m/s = -161 m/s
(notice the negative sign of the velocity that is in opposite direction to the direction considered positive)
Then the average acceleration will be:
a = Δv/t
a = -161 m/s / 6.0 s
a = -27 m/s²
The average acceleration during the 6.0 s interval was -27 m/s².
Rheostats are pure resistances with a provision to vary the resistance connected in the circuit with a moving contact. Resistance do not have polarities
Answer:
E = 1,873 10³ N / C
Explanation:
For this exercise we can use Gauss's law
Ф = E. dA =
/ ε₀
Where q_{int} is the charge inside an artificial surface that surrounds the charged body, in this case with the body it has a spherical shape, the Gaussian surface is a wait with radius r = 1.35 m that is greater than the radius of the sphere.
The field lines of the sphere are parallel to the radii of the Gaussian surface so the scald product is reduced to the algebraic product.
The surface of a sphere is
A = 4π r²
E 4π r² = q_{int} /ε₀
The net charge within the Gauussian surface is the charge in the sphere of q1 = + 530 10⁻⁹ C and the point charge in the center q2 = -200 10⁻⁹ C, since all the charge can be considered in the center the net charge is
q_{int} = q₁ + q₂
q_{int} = (530 - 200) 10⁻⁹
q_{int} = 330 10⁻⁹ C
The electric field is
E = 1 / 4πε₀ q_{int} / r²
k = 1 / 4πε₀
E = k q_{int}/ r²
Let's calculate
E = 8.99 10⁹ 330 10⁻⁹/ 1.32²
E = 1,873 10³ N / C
Covalent bonds form when two or more atoms share electrons
Answer:
a. Technician A
Explanation:
Technician A says that a MAF sensor is a high-authority sensor and is responsible for determining the fuel needs of the engine based on the measured amount of air entering the engine. Technician B says that a cold wire MAF sensor uses the electronics in the sensor itself to heat a wire 20°C below the temperature of the air entering the engine. Who is right
MAF wich stands for mass airflow sensor determines the mass of air flowing into the engine's air intake system. ... , the wire cools When air flows past the wire, decreasing its resistance, thereby more current flows through the circuit. When the MAf goes bad, it can not sense the amount of air intake into the engine.