Answer: a) 25 Hz, 0.04s, 19.64. b) y(x, 0) = 0.07 sin 19.64x. c) - 0.019 m. d) 0.045s
Explanation: wave speed (v) = 8m/s, amplitude (A) = 0.07m and wavelength (λ) = 0.32m
A)
Recall that v = fλ
8 = f( 0.32)
f = 8/ 0.32 = 25 Hz.
But T = 1/f
T = 1/25 = 0.04s
Wave number (k) = 2π/λ= 2(3.142)/0.32 = 19.64
B)
y(x, t) = A sin (kx - wt) but t =0
Hence, y(x, 0) = A sin kx
y(x, 0) = 0.07 sin 19.64x
C) recall that y(x, t) = A sin (kx - wt), we are to find y(x,t) when x = 0.360m and t = 0.150s
w=2πf = 2(3.142)× 25 = 157.14 rad/s
A = 0.07m
k = 19.64
y(x,t) = 0.07 sin {19.65(0.360) - 157.14(0.15)}
y(x,t) = 0.07 sin { 7.074 - 23.571}
y(x,t) = 0.07 sin (-16.497)
y(x,t) = 0.07 × (-0.283)
y(x,t) = - 0.019 m
D) wave speed = 8m/s, x = 0.360 m
Wave speed = distance /time
8 = 0.360/t
t = 0.360/8 =0.045s