B.
technically it would depend if the resistors were in series or parallel but B is the answer.
Answer:
C
Explanation:
First find the electrical wattage
W = I^2 * R
R = 12 ohms
I = 2 amps
Wattage = 2^2 * 12
Wattage = 4* 12
Wattage = 48 watts.
Now you need to use the power formula
Work = Power * Time
Work = ?
Power = 48 watts
Time = 3 minutes = 3 * 60 = 180 seconds.
Work = 48 * 180
Work = 8640 J
That's C
Answer:
no:
Explanation:
it would grow and no longer be able to fit through the loop due to the hot air expanding.
<h3><u>Answer;</u></h3>
Large mirrors are easier to build than large lenses.
<h3><u>Explanation;</u></h3>
- <em><u>Reflector telescopes have a number of advantages as compared to refracting telescopes and other types of telescopes. </u></em>
- <em><u>Reflector telescopes do not suffer from chromatic aberration because all wavelengths will reflect off the mirror in the same way. The support for the objective mirror is all along the back side so they can be made very large.</u></em>
- Additionally, reflector telescopes are cheaper to make than refractors of the same size. Also since in reflector telescopes light is reflecting off the objective, rather than passing through it, only one side of the reflector telescope's objective needs to be perfect.
<h2>
Answer: 277.777 m</h2>
Explanation:
The situation described here is parabolic movement. However, as we are told that the rock was<u> projected upward from the surface</u>, we will only use the equations related to the Y axis.
In this sense, the movement equations in the Y axis are:
(1)
(2)
Where:
is the rock's final position
is the rock's initial position
is the rock's initial velocity
is the final velocity
is the time the parabolic movement lasts
is the acceleration due to gravity at the surface of the moon
As we know
, equation (2) is rewritten as:
(3)
On the other hand, the maximum height is accomplished when
:
(4)
(5)
Finding
:
(6)
Substituting (6) in (3):
(7)
(8) Now we can calculate the maximum height of the rock
(9)
Finally: